Cryptocurrency Mining Profitability Calculator - CoinWarz

Filecoin | Development Status and Mining Progress

Author: Gamals Ahmed, CoinEx Business Ambassador
https://preview.redd.it/5bqakdqgl3g51.jpg?width=865&format=pjpg&auto=webp&s=b709794863977eb6554e3919b9e00ca750e3e704
A decentralized storage network that transforms cloud storage into an account market. Miners obtain the integrity of the original protocol by providing data storage and / or retrieval. On the contrary, customers pay miners to store or distribute data and retrieve it.
Filecoin announced, that there will be more delays before its main network is officially launched.
Filecoin developers postponed the release date of their main network to late July to late August 2020.
As mentioned in a recent announcement, the Filecoin team said that the initiative completed the first round of the internal protocol security audit. Platform developers claim that the results of the review showed that they need to make several changes to the protocol’s code base before performing the second stage of the software testing process.
Created by Protocol Labs, Filecoin was developed using File System (IPFS), which is a peer-to-peer data storage network. Filecoin will allow users to trade storage space in an open and decentralized market.
Filecoin developers implemented one of the largest cryptocurrency sales in 2017. They have privately obtained over $ 200 million from professional or accredited investors, including many institutional investors.
The main network was slated to launch last month, but in February 2020, the Philly Queen development team delayed the release of the main network between July 15 and July 17, 2020.
They claimed that the outbreak of the Coronavirus (COVID-19) in China was the main cause of the delay. The developers now say that they need more time to solve the problems found during a recent codecase audit.
The Filecoin team noted the following:
“We have drafted a number of protocol changes to ensure that building our major network launch is safe and economically sound.” The project developers will add them to two different implementations of Filecoin (Lotus and go-filecoin) in the coming weeks.
Filecoin developers conducted a survey to allow platform community members to cast their votes on three different launch dates for Testnet Phase 2 and mainnet.
The team reported that the community gave their votes. Based on the vote results, the Filecoin team announced a “conservative” estimate that the second phase of the network test should begin by May 11, 2020. The main Filecoin network may be launched sometime between July 20 and August 21, 2020.
The updates to the project can be found on the Filecoin Road Map.
Filecoin developers stated:
“This option will make us get the most important protocol changes first, and then implement the rest as protocol updates during testnet.” Filecoin is back down from the final test stage.
Another filecoin decentralized storage network provider launched its catalytic test network, the final stage of the storage network test that supports the blockchain.
In a blog post on her website, Filecoin said she will postpone the last test round until August. The company also announced a calibration period from July 20 to August 3 to allow miners to test their mining settings and get an idea of how competition conditions affected their rewards.
Filecoin had announced earlier last month that the catalytic testnet test would precede its flagship launch. The delay in the final test also means that the company has returned the main launch window between August 31 and September 21.
Despite the lack of clear incentives for miners and multiple delays, Filecoin has succeeded in attracting huge interest, especially in China. Investors remained highly speculating on the network’s mining hardware and its premium price.
Mining in Filecoin
In most blockchain protocols, “miners” are network participants who do the work necessary to promote and maintain the blockchain. To provide these services, miners are compensated in the original cryptocurrency.
Mining in Filecoin works completely differently — instead of contributing to computational power, miners contribute storage capacity to use for dealing with customers looking to store data.
Filecoin will contain several types of miners:
Storage miners responsible for storing files and data on the network. Miners retrieval, responsible for providing quick tubes for file recovery. Miners repair to be carried out.
Storage miners are the heart of the network. They earn Filecoin by storing data for clients, and computerizing cipher directories to check storage over time. The probability of earning the reward reward and transaction fees is proportional to the amount of storage that the Miner contributes to the Filecoin network, not the hash power.
Retriever miners are the veins of the network. They earn Filecoin by winning bids and mining fees for a specific file, which is determined by the market value of the said file size. Miners bandwidth and recovery / initial transaction response time will determine its ability to close recovery deals on the network.
The maximum bandwidth of the recovery miners will determine the total amount of deals that it can enter into.
In the current implementation, the focus is mostly on storage miners, who sell storage capacity for FIL.

Hardware recommendations

The current system specifications recommended for running the miner are:
Compared to the hardware requirements for running a validity checker, these standards are much higher — although they definitely deserve it. Since these will not increase in the presumed future, the money spent on Filecoin mining hardware will provide users with many years of reliable service, and they pay themselves many times. Think of investing as a small business for cloud storage. To launch a model on the current data hosting model, it will cost millions of dollars in infrastructure and logistics to get started. With Filecoin, you can do the same for a few thousand dollars.
Proceed to mining
Deals are the primary function of the Filecoin network, and it represents an agreement between a client and miners for a “storage” contract.
Once the customer decides to have a miner to store based on the available capacity, duration and price required, he secures sufficient funds in a linked portfolio to cover the total cost of the deal. The deal is then published once the mine accepts the storage agreement. By default, all Filecoin miners are set to automatically accept any deal that meets their criteria, although this can be disabled for miners who prefer to organize their deals manually.
After the deal is published, the customer prepares the data for storage and then transfers it to the miner. Upon receiving all the data, the miner fills in the data in a sector, closes it, and begins to provide proofs to the chain. Once the first confirmation is obtained, the customer can make sure the data is stored correctly, and the deal has officially started.
Throughout the deal, the miner provides continuous proofs to the chain. Clients gradually pay with money they previously closed. If there is missing or late evidence, the miner is punished. More information about this can be found in the Runtime, Cut and Penalties section of this page.
At Filecoin, miners earn two different types of rewards for their efforts: storage fees and reward prevention.
Storage fees are the fees that customers pay regularly after reaching a deal, in exchange for storing data. This fee is automatically deposited into the withdrawal portfolio associated with miners while they continue to perform their duties over time, and is locked for a short period upon receipt.
Block rewards are large sums given to miners calculated on a new block. Unlike storage fees, these rewards do not come from a linked customer; Instead, the new FIL “prints” the network as an inflationary and incentive measure for miners to develop the chain. All active miners on the network have a chance to get a block bonus, their chance to be directly proportional to the amount of storage space that is currently being contributed to the network.
Duration of operation, cutting and penalties
“Slashing” is a feature found in most blockchain protocols, and is used to punish miners who fail to provide reliable uptime or act maliciously against the network.
In Filecoin, miners are susceptible to two different types of cut: storage error cut, unanimously reduce error.
Storage Error Reduction is a term used to include a wider range of penalties, including error fees, sector penalties, and termination fees. Miners must pay these penalties if they fail to provide reliability of the sector or decide to leave the network voluntarily.
An error fee is a penalty that a miner incurs for each non-working day. Sector punishment: A penalty incurred by a miner of a disrupted sector for which no error was reported before the WindowPoSt inspection.
The sector will pay an error fee after the penalty of the sector once the error is discovered.
Termination Fee: A penalty that a miner incurs when a sector is voluntary or involuntarily terminated and removed from the network.
Cutting consensus error is the penalty that a miner incurs for committing consensus errors. This punishment applies to miners who have acted maliciously against the network consensus function.
Filecoin miners
Eight of the top 10 Felticoin miners are Chinese investors or companies, according to the blockchain explorer, while more companies are selling cloud mining contracts and distributed file sharing system hardware. CoinDesk’s Wolfe Chao wrote: “China’s craze for Filecoin may have been largely related to the long-standing popularity of crypto mining in the country overall, which is home to about 65% of the computing power on Bitcoin at discretion.”
With Filecoin approaching the launch of the mainnet blocknet — after several delays since the $ 200 million increase in 2017 — Chinese investors are once again speculating strongly about network mining devices and their premium prices.
Since Protocol Labs, the company behind Filecoin, released its “Test Incentives” program on June 9 that was scheduled to start in a week’s time, more than a dozen Chinese companies have started selling cloud mining contracts and hardware — despite important details such as economics Mining incentives on the main network are still endless.
Sales volumes to date for each of these companies can range from half a million to tens of millions of dollars, according to self-reported data on these platforms that CoinDesk has watched and interviews with several mining hardware manufacturers.
Filecoin’s goal is to build a distributed storage network with token rewards to spur storage hosting as a way to drive wider adoption. Protocol Labs launched a test network in December 2019. But the tokens mined in the testing environment so far are not representative of the true silicon coin that can be traded when the main network is turned on. Moreover, the mining incentive economics on testnet do not represent how final block rewards will be available on the main network.
However, data from Blockecoin’s blocknetin testnet explorers show that eight out of 10 miners with the most effective mining force on testnet are currently Chinese miners.
These eight miners have about 15 petabytes (PB) of effective storage mining power, accounting for more than 85% of the total test of 17.9 petable. For the context, 1 petabyte of hard disk storage = 1000 terabytes (terabytes) = 1 million gigabytes (GB).
Filecoin craze in China may be closely related to the long-standing popularity of crypt mining in the country overall, which is home to about 65% of the computing power on Bitcoin by estimation. In addition, there has been a lot of hype in China about foreign exchange mining since 2018, as companies promote all types of devices when the network is still in development.
“Encryption mining has always been popular in China,” said Andy Tien, co-founder of 1475, one of several mining hardware manufacturers in Philquin supported by prominent Chinese video indicators such as Fenbushi and Hashkey Capital.
“Even though the Velikoyen mining process is more technologically sophisticated, the idea of mining using hard drives instead of specialized machines like Bitcoin ASIC may be a lot easier for retailers to understand,” he said.
Meanwhile, according to Feixiaohao, a Chinese service comparable to CoinMarketCap, nearly 50 Chinese crypto exchanges are often somewhat unknown with some of the more well-known exchanges including Gate.io and Biki — have listed trading pairs for Filecoin currency contracts for USDT.
In bitcoin mining, at the current difficulty level, one segment per second (TH / s) fragmentation rate is expected to generate around 0.000008 BTC within 24 hours. The higher the number of TH / s, the greater the number of bitcoins it should be able to produce proportionately. But in Filecoin, the efficient mining force of miners depends on the amount of data stamped on the hard drive, not the total size of the hard drive.
To close data in the hard drive, the Filecoin miner still needs processing power, i.e. CPU or GPU as well as RAM. More powerful processors with improved software can confine data to the hard drive more quickly, so miners can combine more efficient mining energy faster on a given day.
As of this stage, there appears to be no transparent way at the network level for retail investors to see how much of the purchased hard disk drive was purchased which actually represents an effective mining force.
The U.S.-based Labs Protocol was behind Filecoin’s initial coin offer for 2017, which raised an astonishing $ 200 million.
This was in addition to a $ 50 million increase in private investment supported by notable venture capital projects including Sequoia, Anderson Horowitz and Union Square Ventures. CoinDk’s parent company, CoinDk, has also invested in Protocol Labs.
After rounds of delay, Protocol Protocols said in September 2019 that a testnet launch would be available around December 2019 and the main network would be rolled out in the first quarter of 2020.
The test started as promised, but the main network has been delayed again and is now expected to launch in August 2020. What is Filecoin mining process?
Filecoin mainly consists of three parts: the storage market (the chain), the blockecin Filecoin, and the search market (under the chain). Storage and research market in series and series respectively for security and efficiency. For users, the storage frequency is relatively low, and the security requirements are relatively high, so the storage process is placed on the chain. The retrieval frequency is much higher than the storage frequency when there is a certain amount of data. Given the performance problem in processing data on the chain, the retrieval process under the chain is performed. In order to solve the security issue of payment in the retrieval process, Filecoin adopts the micro-payment strategy. In simple terms, the process is to split the document into several copies, and every time the user gets a portion of the data, the corresponding fee is paid. Types of mines corresponding to Filecoin’s two major markets are miners and warehousers, among whom miners are primarily responsible for storing data and block packages, while miners are primarily responsible for data query. After the stable operation of the major Filecoin network in the future, the mining operator will be introduced, who is the main responsible for data maintenance.
In the initial release of Filecoin, the request matching mechanism was not implemented in the storage market and retrieval market, but the takeover mechanism was adopted. The three main parts of Filecoin correspond to three processes, namely the stored procedure, retrieval process, packaging and reward process. The following figure shows the simplified process and the income of the miners:
The Filecoin mining process is much more complicated, and the important factor in determining the previous mining profit is efficient storage. Effective storage is a key feature that distinguishes Filecoin from other decentralized storage projects. In Filecoin’s EC consensus, effective storage is similar to interest in PoS, which determines the likelihood that a miner will get the right to fill, that is, the proportion of miners effectively stored in the entire network is proportional to final mining revenue.
It is also possible to obtain higher effective storage under the same hardware conditions by improving the mining algorithm. However, the current increase in the number of benefits that can be achieved by improving the algorithm is still unknown.
It seeks to promote mining using Filecoin Discover
Filecoin announced Filecoin Discover — a step to encourage miners to join the Filecoin network. According to the company, Filecoin Discover is “an ever-growing catalog of numerous petabytes of public data covering literature, science, art, and history.” Miners interested in sharing can choose which data sets they want to store, and receive that data on a drive at a cost. In exchange for storing this verified data, miners will earn additional Filecoin above the regular block rewards for storing data. Includes the current catalog of open source data sets; ENCODE, 1000 Genomes, Project Gutenberg, Berkley Self-driving data, more projects, and datasets are added every day.
Ian Darrow, Head of Operations at Filecoin, commented on the announcement:
“Over 2.5 quintillion bytes of data are created every day. This data includes 294 billion emails, 500 million tweets and 64 billion messages on social media. But it is also climatology reports, disease tracking maps, connected vehicle coordinates and much more. It is extremely important that we maintain data that will serve as the backbone for future research and discovery”.
Miners who choose to participate in Filecoin Discover may receive hard drives pre-loaded with verified data, as well as setup and maintenance instructions, depending on the company. The Filecoin team will also host the Slack (fil-Discover-support) channel where miners can learn more.
Filecoin got its fair share of obstacles along the way. Last month Filecoin announced a further delay before its main network was officially launched — after years of raising funds.
In late July QEBR (OTC: QEBR) announced that it had ceded ownership of two subsidiaries in order to focus all of the company’s resources on building blockchain-based mining operations.
The QEBR technology team previously announced that it has proven its system as a Filecoin node valid with CPU, GPU, bandwidth and storage compatibility that meets all IPFS guidelines. The QEBR test system is connected to the main Filecoin blockchain and the already mined filecoin coin has already been tested.
“The disclosure of Sheen Boom and Jihye will allow our team to focus only on the upcoming global launch of Filecoin. QEBR branch, Shenzhen DZD Digital Technology Ltd. (“ DZD “), has a strong background in blockchain development, extraction Data, data acquisition, data processing, data technology research. We strongly believe Filecoin has the potential to be a leading blockchain-based cryptocurrency and will make every effort to make QEBR an important player when Mainecoin mainnet will be launched soon”.
IPFS and Filecoin
Filecoin and IPFS are complementary protocols for storing and sharing data in a decentralized network. While users are not required to use Filecoin and IPFS together, the two combined are working to resolve major failures in the current web infrastructure.
IPFS
It is an open source protocol that allows users to store and transmit verifiable data with each other. IPFS users insist on data on the network by installing it on their own device, to a third-party cloud service (known as Pinning Services), or through community-oriented systems where a group of individual IPFS users share resources to ensure the content stays live.
The lack of an integrated catalytic mechanism is the challenge Filecoin hopes to solve by allowing users to catalyze long-term distributed storage at competitive prices through the storage contract market, while maintaining the efficiency and flexibility that the IPFS network provides.
Using IPFS
In IPFS, the data is hosted by the required data installation nodes. For data to persist while the user node is offline, users must either rely on their other peers to install their data voluntarily or use a central install service to store data.
Peer-to-peer reliance caching data may be a good thing as one or multiple organizations share common files on an internal network, or where strong social contracts can be used to ensure continued hosting and preservation of content in the long run. Most users in an IPFS network use an installation service.
Using Filecoin
The last option is to install your data in a decentralized storage market, such as Filecoin. In Filecoin’s structure, customers make regular small payments to store data when a certain availability, while miners earn those payments by constantly checking the integrity of this data, storing it, and ensuring its quick recovery. This allows users to motivate Filecoin miners to ensure that their content will be live when it is needed, a distinct advantage of relying only on other network users as required using IPFS alone.
Filecoin, powered by IPFS
It is important to know that Filecoin is built on top of IPFS. Filecoin aims to be a very integrated and seamless storage market that takes advantage of the basic functions provided by IPFS, they are connected to each other, but can be implemented completely independently of each other. Users do not need to interact with Filecoin in order to use IPFS.
Some advantages of sharing Filecoin with IPFS:
Of all the decentralized storage projects, Filecoin is undoubtedly the most interested, and IPFS has been running stably for two years, fully demonstrating the strength of its core protocol.
Filecoin’s ability to obtain market share from traditional central storage depends on end-user experience and storage price. Currently, most Filecoin nodes are posted in the IDC room. Actual deployment and operation costs are not reduced compared to traditional central cloud storage, and the storage process is more complicated.
PoRep and PoSt, which has a large number of proofs of unknown operation, are required to cause the actual storage cost to be so, in the early days of the release of Filecoin. The actual cost of storing data may be higher than the cost of central cloud storage, but the initial storage node may reduce the storage price in order to obtain block rewards, which may result in the actual storage price lower than traditional central cloud storage.
In the long term, Filecoin still needs to take full advantage of its P2P storage, convert storage devices from specialization to civil use, and improve its algorithms to reduce storage costs without affecting user experience. The storage problem is an important problem to be solved in the blockchain field, so a large number of storage projects were presented at the 19th Web3 Summit. IPFS is an important part of Web3 visibility. Its development will affect the development of Web3 to some extent. Likewise, Web3 development somewhat determines the future of IPFS. Filecoin is an IPFS-based storage class project initiated by IPFS. There is no doubt that he is highly expected.
Resources :
  1. https://www.coindesk.com/filecoin-pushes-back-final-testing-phase-announces-calibration-period-for-miners
  2. https://docs.filecoin.io/mine/#types-of-miners https://www.nasdaq.com/articles/inside-the-craze-for-filecoin-crypto-mining-in-china-2020-07-12؟amp
  3. https://www.prnewswire.com/news-releases/qebr-streamlines-holdings-to-concentrate-on-filecoin-development-and-mining-301098731.html
  4. https://www.crowdfundinsider.com/2020/05/161200-filecoin-seeks-to-boost-mining-with-filecoin-discove
  5. https://zephyrnet.com/filecoin-seeks-to-boost-mining-with-filecoin-discove
  6. https://docs.filecoin.io/introduction/ipfs-and-filecoin/#filecoin-powered-by-ipfs
submitted by CoinEx_Institution to filecoin [link] [comments]

Bull market is back… Another wave of hacker attacks starts again?

Bull market is back… Another wave of hacker attacks starts again?

The picture from COINDESK related reports
On Aug. 2, Ethereum Classic Labs (ETC Labs) made an important announcement on ETC blockchain. ETC Labs said due to network attack, Ethereum Classic suffered a reorganization on August 1st. This has been the second attack on the Ethereum Classic Network this year.
Did renting-power cause the problem again?
In this ETC incident, one of the miners mined a large number of blocks offline. When the miner went online, due to its high computing power, and some versions of mining software did not support large-scale blockchain mergers, the consensus failed. Therefore, the entire network was out of sync, which produced an effect similar to a 51% attack. Finally, it caused the reorganization of 3693 blocks, starting at 10904147. The deposit and withdrawal between the exchanges and mining pools had to be suspended for troubleshooting during this period.
Media report shows that the blockchain reorganization may be caused by a miner (or a mining pool) disconnected during mining. Although it has been restored to normal after 15 hours of repair, it does reflect the vulnerability of the Proof of Work (PoW) network: once the computing power of the network is insufficient, the performance of one single mining pool can affect the entire network, which is neither distributed nor secure for the blockchain. Neither does it have efficiency.
At present, most consensus algorithms of blockchains are using PoW, which has been adopted over 10 years. In PoW, each miner solves a hashing problem. The probability to solve the problem successfully is proportional to the ratio of the miner’s hash power to the total hash power of mainnet.
Although PoW has been running for a long time, the attack model against PoW is very straightforward to understand, and has attracted people’s attention for a long time: such an attack, also known as double-spending attack, may happen when an attacker possesses 51% of the overall network hash power. The attacker can roll back any blocks in the blockchain by creating a longer and more difficult chain and as a result, modify the transaction information.
Since hash power can be rented to launch attacks, some top 30 projects have suffered from such attacks. In addition to this interference, the main attack method is through the computing power market such as Nice Hash. Hackers can rent hashpower to facilitate their attacks, which allows the computing power to rise rapidly in a short time and rewrite information. In January of this year, the Ethereum Classic was attacked once, and it was also the case that hackers can migrate computing power from the fiercely competitive Bitcoin and Ethereum, and use it to attack smaller projects, such as ETH Classic.

The picture shows the cost of attacking ETH Classic. It can be seen that it costs only $6,634 to attack ETH Classic for one hour.
The security of one network is no longer limited by whether miners within the main net take more than 51% of the total hash power, rather it is determined by whether the benevolent (non-hackers) miners take more than 51% of the total hash power from the pool of projects that use similar consensus algorithm. For example, the hash power of Ethereum is 176 TH/s and that of Ethereum Classic is 9 TH/s. In this way, if one diverts some hash power from Ethereum (176 TH/s) to Ethereum Classic, then one can easily launch a double-spending attack to Ethereum Classic. The hash power ratio for this attack between the two projects is 9/176 = 5.2%, which is a tiny number.

https://preview.redd.it/qj57vgmgb9f51.png?width=699&format=png&auto=webp&s=39c1efc3645f268dbf1c73e1b373d532d5461006
As one of the top 30 blockchain projects, Ethereum Classic has been attacked several times. Therefore, those small and medium-sized projects with low hash power and up-and-coming future projects are facing great potential risks. This is the reason that many emerging public chain projects abandon PoW and adopt PoS.
Proof of Stake (PoS) can prevent 51% attack but has problems of its own
In addition to PoW consensus, another well-adopted consensus algorithm is Proof of Stake (PoS). The fundamental concept is that the one who holds more tokens has the right to create the blocks. This is similar to shareholders in the stock market. The token holders also have the opportunities to get rewards. The advantages of PoS are: (i) the algorithm avoids wasting energy like that in PoW calculation; and (ii) its design determines that the PoS will not be subjected to 51% hash power attack since the algorithm requires the miner to possess tokens in order to modify the ledger. In this way, 51% attack becomes costly and meaningless.

https://preview.redd.it/rf65o1vhb9f51.png?width=685&format=png&auto=webp&s=9d7a9f9dab6ce823a224e91afa9d116310cf27e1
In terms of disadvantages, nodes face the problem of accessibility. PoS requires a permission to enter the network and nodes cannot enter and exit freely and thus lacks openness. It can easily be forked. In the long run, the algorithm is short of decentralization, and leads to the Matthew effect of accumulated advantages whereby miners with more tokens will receive more rewards and perpetuate the cycle.
More importantly, the current PoS consensus has not been verified for long-term reliability. Whether it can be as stable as the PoW system is yet to be verified. For some of the PoW public chains that are already launched, if they want to switch consensus, they need to do hard fork, which divides communities and carries out a long consensus upgrade and through which Ethereum is undergoing. Is there a safer and better solution?
QuarkChain Provide THE Solution: High TPS Protection + PoSW Consensus
For new-born projects, and some small or medium-sized projects, they all are facing the problem of power attack. For PoW-based chains, there are always some chains with lower hash power than others (ETC vs. ETH, BCH vs BTC), and thus the risk of attack is increased. In addition, the interoperability among the chains, such as cross-chain operation, is also a problem. In response, QuarkChain has designed a series of mechanisms to solve this problem. This can be summed up as a two-layer structure with a calculation power allocation and Proof of Staked Work (PoSW) consensus.
First of all, there is a layer of sharding, which can be considered as some parallel chains. Each sharding chain handles the transactions relatively independently. Such design forms the basis to ensure the performance of the entire system. To avoid security issues caused by the dilution of the hash power, we also have a root chain. The blocks of the root chain do not contain transactions, but are responsible for verifying the transactions of each shard. Relying on the hash power distribution algorithm, the hash power of the root chain will always account for 51% of the net. Each shard, on the other hand, packages their transactions according to their own consensus and transaction models.
Moreover, QuarkChain relies on flexibility that allows each shard to have different consensus and transaction models. Someone who wants to launch a double-spending attack on a shard that is already contained in the root chain must attack the block on the root chain, which requires calling the 51% hash power of the root chain. That is, if there are vertical field projects that open new shards on QuarkChain, even with insufficient hash power, an attacker must first attack the root chain if he or she wants to attack a new shard. The root chain has maintained more than 51% of the network’s hash power, which makes the attack very difficult.

https://preview.redd.it/rxpohs7jb9f51.png?width=674&format=png&auto=webp&s=e2df1307a1753542472f2b6da88e7a4022b30884

As illustrated in the diagram, if the attacker wants to attack the QuarkChain network, one would need to attack the shard and the root chain simultaneously.
PoW has achieved a high level of decentralization and has been verified for its stability for a long time. Combining PoW with the staking capability for PoS would make use of the advantages of both consensus mechanisms. That is what QuarkChain’s PoSW achieves exactly.
PoSW, which is Proof of Staked Work, is exclusively developed by QuarkChain and runs on shards. PoSW allows miners to enjoy the benefits of lower mining difficulty by staking original tokens (currently it’s 20 times lower). Conversely, if someone malicious with a high hash power and does not stake tokens on QuarkChain, he will be punishable by receiving 20 times the difficulty of the hash power, which increases the cost of attack. If the attacker stakes tokens in order to reduce the cost of attack, he/she needs to stake the corresponding amount of tokens, which may cost even more. Thus, the whole network is more secure.
Taking Ethereum Classics (ETC) as an example, if ETC uses the PoSW consensus, if there was another double-spending attack similar to the one in January, the attacker will need at least 110Th/s hash power or 650320 ETC (worth $3.2 million, and 8 TH/s hash power) to create this attack, which is far greater than the cost of the current attack on the network (8Th/s hash power) and revenue (219500 ETC).
Relying on multiple sets of security mechanisms, QuarkChain ensures its own security, while providing security for new shards and small and medium-sized projects. Its high level of flexibility also allows the projects to support different types of ledger models, transaction models, virtual machines, and token economics. Such great degrees of security and flexibility will facilitate the blockchain ecosystem to accelerate growth of innovative blockchain applications.
Learn more about QuarkChain
Website https://www.quarkchain.io
Telegram https://t.me/quarkchainio
Twitter https://twitter.com/Quark_Chain
Medium https://medium.com/quarkchain-official
Reddit https://www.reddit.com/quarkchainio/
Community https://community.quarkchain.io/
submitted by QuarkChain to quarkchainio [link] [comments]

Cryptocurrency Mining Today

Cryptocurrency Mining Today
Mining is one of the key concepts in the crypto world. Everyone who comes into contact with this sphere somehow wonders about the mining of coins. How profitable is mining in 2020, and what are the current trends?
by StealthEX
Crypto mining is a process during which a computer solves mathematical problems, resulting in the release of new blocks of information. This gives its owners a certain amount of coins, which is deposited in the total pot and registered in the public “ledger”, so-called blockchain. Machines in the network are also checking transactions with existing coins, adding this information to the blockchain as well.
As for the issue itself, the most well-known algorithm of mining is Proof-of-Work (PoW), used in the networks of Bitcoin, Litecoin, Ethereum and many others.
During the mining process, the latest transactions are verified and compiled into blocks. It is usually a series of calculations with an iteration of parameters to find a hash with the specified properties. The node which first solves this problem receives a reward. This approach was specifically designed to encourage those who provide the computing power of their mining machines to maintain the network and mine new coins.
It is usually no need for a newcomer to know and understand all the complicated details of the mining process, just how much they can earn with certain equipment and electricity costs.
Everything is designed in such a way that the complexity of calculations is steadily increasing, which then requires a constant increase in the computing power of the network. In 2009-2010, for mining bitcoin, miners only had to download and run the software on their personal computers, but very soon the network became so complicated that even with best PCs with a powerful processor, mining became unprofitable. That’s why miners started to use more effective video cards (graphics processing units or GPUs) and join them in so-called “farms”.
In most systems, the number of coins is determined in advance. Also, many networks are gradually reducing rewards for miners. Such emission restrictions were built into the algorithm to prevent inflation.
Thus, the cost of mining for smaller participants no longer pays off, which makes them turn off their hardware or switch to another coin where they can still make their profit.
In particular, on the evening of May 11, 2020, a halving took place in the bitcoin network, the reward for mining was halved, from 12.5 to 6.25 BTC. In June, the revenue of bitcoin miners decreased by 23%, to the lowest since March 2019.
However, in mid-June, the difficulty of bitcoin mining showed a record growth over the past 2.5 years. Mining the first cryptocurrency has become 15% more difficult. Although, by the beginning of July, the complexity had stabilized. The growing difficulty of mining the first cryptocurrency indicates that new miners have joined its network. Previously, some of them turned off the equipment, as it became less profitable to mine the coin due to a decrease in its cost and halving.
Now the absolute majority of new coins are generated by industrial mining. This is done by large data centers equipped with specialized computers based on the ASIC architecture. ASICs are integrated circuits that were initially optimized for a specific task, namely the mining of cryptocurrencies. They are much more productive than CPUs and video cards, and at the same time consume much less electricity. ASIC computers are the main type of equipment for the industrial production of crypto.
So now, after the halving, BTC coin mining has become even less profitable. For beginners, mining the first cryptocurrency is unlikely to be suitable. It is more often earned by large companies that have all the necessary equipment, access to cheap rental conditions, electricity and maintenance.
Hence newbies are better off starting with mining altcoins. It is even more profitable to work in a pool, that is, together with other miners. This can help to place farms in one place and negotiate a favourable price for electricity, so you can get a small but stable income dux to the total capacity of the pool.
Therefore, it has become much more difficult for regular users who have only non-specialized equipment at their disposal to generate virtual money. However, GPU developers have significantly increased the performance of their devices in recent years, so mining on a video card is still common.
Another important event that changes the situation in the mining sphere will be the hardfork of the Ethereum network with the turn to the Proof-of-Stake algorithm. For now, Ethereum is the most popular altcoin for GPU mining, but Ethereum 2.0 will not require using such powerful equipment, so then it switches to PoS, GPU owners will have to look for alternative coins to mine.
At the moment the most popular altcoins for mining on GPUs are Ethereum (ETH), Ethereum Classic (ETC), Grin (GRIN), Zcoin (XZC), Dogecoin and Ravencoin (RVN). There are actually a lot of mining programs that automatically determine which coin is more profitable to mine at the moment.
In the coming years, the market is waiting for a race of technologies. Manufacturers are investing in finding ways to increase hashing speed and reduce power consumption. Mining pools will play an increasing role. The market will also be affected by applications for mining cryptocurrencies on smartphones that require low computing power, such as Dash or Litecoin.
And remember StealthEX supports more than 250 coins and constantly updating the list, so you can easily swap your crypto haul to more popular altcoins. Our service does not require registration and allows you to remain anonymous. Why don’t you check it out? Just go to StealthEX and follow these easy steps:
✔ Choose the pair and the amount for your exchange. For example ETH to BTC.
✔ Press the “Start exchange” button.
✔ Provide the recipient address to which the coins will be transferred.
✔ Move your cryptocurrency for the exchange.
✔ Receive your coins.
Follow us on Medium, Twitter, and Reddit to get StealthEX.io updates and the latest news about the crypto world. For all requests message us via [email protected].
The views and opinions expressed here are solely those of the author. Every investment and trading move involves risk. You should conduct your own research when making a decision.
Original article was posted on https://stealthex.io/blog/2020/07/28/mining-today/
submitted by Stealthex_io to StealthEX [link] [comments]

Where is Bitcoin Going and When?

Where is Bitcoin Going and When?

The Federal Reserve and the United States government are pumping extreme amounts of money into the economy, already totaling over $484 billion. They are doing so because it already had a goal to inflate the United States Dollar (USD) so that the market can continue to all-time highs. It has always had this goal. They do not care how much inflation goes up by now as we are going into a depression with the potential to totally crash the US economy forever. They believe the only way to save the market from going to zero or negative values is to inflate it so much that it cannot possibly crash that low. Even if the market does not dip that low, inflation serves the interest of powerful people.
The impending crash of the stock market has ramifications for Bitcoin, as, though there is no direct ongoing-correlation between the two, major movements in traditional markets will necessarily affect Bitcoin. According to the Blockchain Center’s Cryptocurrency Correlation Tool, Bitcoin is not correlated with the stock market. However, when major market movements occur, they send ripples throughout the financial ecosystem which necessary affect even ordinarily uncorrelated assets.
Therefore, Bitcoin will reach X price on X date after crashing to a price of X by X date.

Stock Market Crash

The Federal Reserve has caused some serious consternation with their release of ridiculous amounts of money in an attempt to buoy the economy. At face value, it does not seem to have any rationale or logic behind it other than keeping the economy afloat long enough for individuals to profit financially and politically. However, there is an underlying basis to what is going on which is important to understand in order to profit financially.
All markets are functionally price probing systems. They constantly undergo a price-discovery process. In a fiat system, money is an illusory and a fundamentally synthetic instrument with no intrinsic value – similar to Bitcoin. The primary difference between Bitcoin is the underlying technology which provides a slew of benefits that fiat does not. Fiat, however, has an advantage in being able to have the support of powerful nation-states which can use their might to insure the currency’s prosperity.
Traditional stock markets are composed of indices (pl. of index). Indices are non-trading market instruments which are essentially summaries of business values which comprise them. They are continuously recalculated throughout a trading day, and sometimes reflected through tradable instruments such as Exchange Traded Funds or Futures. Indices are weighted by market capitalizations of various businesses.
Price theory essentially states that when a market fails to take out a new low in a given range, it will have an objective to take out the high. When a market fails to take out a new high, it has an objective to make a new low. This is why price-time charts go up and down, as it does this on a second-by-second, minute-by-minute, day-by-day, and even century-by-century basis. Therefore, market indices will always return to some type of bull market as, once a true low is formed, the market will have a price objective to take out a new high outside of its’ given range – which is an all-time high. Instruments can only functionally fall to zero, whereas they can grow infinitely.
So, why inflate the economy so much?
Deflation is disastrous for central banks and markets as it raises the possibility of producing an overall price objective of zero or negative values. Therefore, under a fractional reserve system with a fiat currency managed by a central bank – the goal of the central bank is to depreciate the currency. The dollar is manipulated constantly with the intention of depreciating its’ value.
Central banks have a goal of continued inflated fiat values. They tend to ordinarily contain it at less than ten percent (10%) per annum in order for the psyche of the general populace to slowly adjust price increases. As such, the markets are divorced from any other logic. Economic policy is the maintenance of human egos, not catering to fundamental analysis. Gross Domestic Product (GDP) growth is well-known not to be a measure of actual growth or output. It is a measure of increase in dollars processed. Banks seek to produce raising numbers which make society feel like it is growing economically, making people optimistic. To do so, the currency is inflated, though inflation itself does not actually increase growth. When society is optimistic, it spends and engages in business – resulting in actual growth. It also encourages people to take on credit and debts, creating more fictional fiat.
Inflation is necessary for markets to continue to reach new heights, generating positive emotional responses from the populace, encouraging spending, encouraging debt intake, further inflating the currency, and increasing the sale of government bonds. The fiat system only survives by generating more imaginary money on a regular basis.
Bitcoin investors may profit from this by realizing that stock investors as a whole always stand to profit from the market so long as it is managed by a central bank and does not collapse entirely. If those elements are filled, it has an unending price objective to raise to new heights. It also allows us to realize that this response indicates that the higher-ups believe that the economy could crash in entirety, and it may be wise for investors to have multiple well-thought-out exit strategies.

Economic Analysis of Bitcoin

The reason why the Fed is so aggressively inflating the economy is due to fears that it will collapse forever or never rebound. As such, coupled with a global depression, a huge demand will appear for a reserve currency which is fundamentally different than the previous system. Bitcoin, though a currency or asset, is also a market. It also undergoes a constant price-probing process. Unlike traditional markets, Bitcoin has the exact opposite goal. Bitcoin seeks to appreciate in value and not depreciate. This has a quite different affect in that Bitcoin could potentially become worthless and have a price objective of zero.
Bitcoin was created in 2008 by a now famous mysterious figure known as Satoshi Nakamoto and its’ open source code was released in 2009. It was the first decentralized cryptocurrency to utilize a novel protocol known as the blockchain. Up to one megabyte of data may be sent with each transaction. It is decentralized, anonymous, transparent, easy to set-up, and provides myriad other benefits. Bitcoin is not backed up by anything other than its’ own technology.
Bitcoin is can never be expected to collapse as a framework, even were it to become worthless. The stock market has the potential to collapse in entirety, whereas, as long as the internet exists, Bitcoin will be a functional system with a self-authenticating framework. That capacity to persist regardless of the actual price of Bitcoin and the deflationary nature of Bitcoin means that it has something which fiat does not – inherent value.
Bitcoin is based on a distributed database known as the “blockchain.” Blockchains are essentially decentralized virtual ledger books, replete with pages known as “blocks.” Each page in a ledger is composed of paragraph entries, which are the actual transactions in the block.
Blockchains store information in the form of numerical transactions, which are just numbers. We can consider these numbers digital assets, such as Bitcoin. The data in a blockchain is immutable and recorded only by consensus-based algorithms. Bitcoin is cryptographic and all transactions are direct, without intermediary, peer-to-peer.
Bitcoin does not require trust in a central bank. It requires trust on the technology behind it, which is open-source and may be evaluated by anyone at any time. Furthermore, it is impossible to manipulate as doing so would require all of the nodes in the network to be hacked at once – unlike the stock market which is manipulated by the government and “Market Makers”. Bitcoin is also private in that, though the ledge is openly distributed, it is encrypted. Bitcoin’s blockchain has one of the greatest redundancy and information disaster recovery systems ever developed.
Bitcoin has a distributed governance model in that it is controlled by its’ users. There is no need to trust a payment processor or bank, or even to pay fees to such entities. There are also no third-party fees for transaction processing. As the ledge is immutable and transparent it is never possible to change it – the data on the blockchain is permanent. The system is not easily susceptible to attacks as it is widely distributed. Furthermore, as users of Bitcoin have their private keys assigned to their transactions, they are virtually impossible to fake. No lengthy verification, reconciliation, nor clearing process exists with Bitcoin.
Bitcoin is based on a proof-of-work algorithm. Every transaction on the network has an associated mathetical “puzzle”. Computers known as miners compete to solve the complex cryptographic hash algorithm that comprises that puzzle. The solution is proof that the miner engaged in sufficient work. The puzzle is known as a nonce, a number used only once. There is only one major nonce at a time and it issues 12.5 Bitcoin. Once it is solved, the fact that the nonce has been solved is made public.
A block is mined on average of once every ten minutes. However, the blockchain checks every 2,016,000 minutes (approximately four years) if 201,600 blocks were mined. If it was faster, it increases difficulty by half, thereby deflating Bitcoin. If it was slower, it decreases, thereby inflating Bitcoin. It will continue to do this until zero Bitcoin are issued, projected at the year 2140. On the twelfth of May, 2020, the blockchain will halve the amount of Bitcoin issued when each nonce is guessed. When Bitcoin was first created, fifty were issued per block as a reward to miners. 6.25 BTC will be issued from that point on once each nonce is solved.
Unlike fiat, Bitcoin is a deflationary currency. As BTC becomes scarcer, demand for it will increase, also raising the price. In this, BTC is similar to gold. It is predictable in its’ output, unlike the USD, as it is based on a programmed supply. We can predict BTC’s deflation and inflation almost exactly, if not exactly. Only 21 million BTC will ever be produced, unless the entire network concedes to change the protocol – which is highly unlikely.
Some of the drawbacks to BTC include congestion. At peak congestion, it may take an entire day to process a Bitcoin transaction as only three to five transactions may be processed per second. Receiving priority on a payment may cost up to the equivalent of twenty dollars ($20). Bitcoin mining consumes enough energy in one day to power a single-family home for an entire week.

Trading or Investing?

The fundamental divide in trading revolves around the question of market structure. Many feel that the market operates totally randomly and its’ behavior cannot be predicted. For the purposes of this article, we will assume that the market has a structure, but that that structure is not perfect. That market structure naturally generates chart patterns as the market records prices in time. In order to determine when the stock market will crash, causing a major decline in BTC price, we will analyze an instrument, an exchange traded fund, which represents an index, as opposed to a particular stock. The price patterns of the various stocks in an index are effectively smoothed out. In doing so, a more technical picture arises. Perhaps the most popular of these is the SPDR S&P Standard and Poor 500 Exchange Traded Fund ($SPY).
In trading, little to no concern is given about value of underlying asset. We are concerned primarily about liquidity and trading ranges, which are the amount of value fluctuating on a short-term basis, as measured by volatility-implied trading ranges. Fundamental analysis plays a role, however markets often do not react to real-world factors in a logical fashion. Therefore, fundamental analysis is more appropriate for long-term investing.
The fundamental derivatives of a chart are time (x-axis) and price (y-axis). The primary technical indicator is price, as everything else is lagging in the past. Price represents current asking price and incorrectly implementing positions based on price is one of the biggest trading errors.
Markets and currencies ordinarily have noise, their tendency to back-and-fill, which must be filtered out for true pattern recognition. That noise does have a utility, however, in allowing traders second chances to enter favorable positions at slightly less favorable entry points. When you have any market with enough liquidity for historical data to record a pattern, then a structure can be divined. The market probes prices as part of an ongoing price-discovery process. Market technicians must sometimes look outside of the technical realm and use visual inspection to ascertain the relevance of certain patterns, using a qualitative eye that recognizes the underlying quantitative nature
Markets and instruments rise slower than they correct, however they rise much more than they fall. In the same vein, instruments can only fall to having no worth, whereas they could theoretically grow infinitely and have continued to grow over time. Money in a fiat system is illusory. It is a fundamentally synthetic instrument which has no intrinsic value. Hence, the recent seemingly illogical fluctuations in the market.
According to trade theory, the unending purpose of a market or instrument is to create and break price ranges according to the laws of supply and demand. We must determine when to trade based on each market inflection point as defined in price and in time as opposed to abandoning the trend (as the contrarian trading in this sub often does). Time and Price symmetry must be used to be in accordance with the trend. When coupled with a favorable risk to reward ratio, the ability to stay in the market for most of the defined time period, and adherence to risk management rules; the trader has a solid methodology for achieving considerable gains.
We will engage in a longer term market-oriented analysis to avoid any time-focused pressure. The Bitcoin market is open twenty-four-hours a day, so trading may be done when the individual is ready, without any pressing need to be constantly alert. Let alone, we can safely project months in advance with relatively high accuracy. Bitcoin is an asset which an individual can both trade and invest, however this article will be focused on trading due to the wide volatility in BTC prices over the short-term.

Technical Indicator Analysis of Bitcoin

Technical indicators are often considered self-fulfilling prophecies due to mass-market psychology gravitating towards certain common numbers yielded from them. They are also often discounted when it comes to BTC. That means a trader must be especially aware of these numbers as they can prognosticate market movements. Often, they are meaningless in the larger picture of things.
  • Volume – derived from the market itself, it is mostly irrelevant. The major problem with volume for stocks is that the US market open causes tremendous volume surges eradicating any intrinsic volume analysis. This does not occur with BTC, as it is open twenty-four-seven. At major highs and lows, the market is typically anemic. Most traders are not active at terminal discretes (peaks and troughs) because of levels of fear. Volume allows us confidence in time and price symmetry market inflection points, if we observe low volume at a foretold range of values. We can rationalize that an absolute discrete is usually only discovered and anticipated by very few traders. As the general market realizes it, a herd mentality will push the market in the direction favorable to defending it. Volume is also useful for swing trading, as chances for swing’s validity increases if an increase in volume is seen on and after the swing’s activation. Volume is steadily decreasing. Lows and highs are reached when volume is lower.
Therefore, due to the relatively high volume on the 12th of March, we can safely determine that a low for BTC was not reached.
  • VIX – Volatility Index, this technical indicator indicates level of fear by the amount of options-based “insurance” in portfolios. A low VIX environment, less than 20 for the S&P index, indicates a stable market with a possible uptrend. A high VIX, over 20, indicates a possible downtrend. VIX is essentially useless for BTC as BTC-based options do not exist. It allows us to predict the market low for $SPY, which will have an indirect impact on BTC in the short term, likely leading to the yearly low. However, it is equally important to see how VIX is changing over time, if it is decreasing or increasing, as that indicates increasing or decreasing fear. Low volatility allows high leverage without risk or rest. Occasionally, markets do rise with high VIX.
As VIX is unusually high, in the forties, we can be confident that a downtrend for the S&P 500 is imminent.
  • RSI (Relative Strength Index): The most important technical indicator, useful for determining highs and lows when time symmetry is not availing itself. Sometimes analysis of RSI can conflict in different time frames, easiest way to use it is when it is at extremes – either under 30 or over 70. Extremes can be used for filtering highs or lows based on time-and-price window calculations. Highly instructive as to major corrective clues and indicative of continued directional movement. Must determine if longer-term RSI values find support at same values as before. It is currently at 73.56.
  • Secondly, RSI may be used as a high or low filter, to observe the level that short-term RSI reaches in counter-trend corrections. Repetitions based on market movements based on RSI determine how long a trade should be held onto. Once a short term RSI reaches an extreme and stay there, the other RSI’s should gradually reach the same extremes. Once all RSI’s are at extreme highs, a trend confirmation should occur and RSI’s should drop to their midpoint.

Trend Definition Analysis of Bitcoin

Trend definition is highly powerful, cannot be understated. Knowledge of trend logic is enough to be a profitable trader, yet defining a trend is an arduous process. Multiple trends coexist across multiple time frames and across multiple market sectors. Like time structure, it makes the underlying price of the instrument irrelevant. Trend definitions cannot determine the validity of newly formed discretes. Trend becomes apparent when trades based in counter-trend inflection points continue to fail.
Downtrends are defined as an instrument making lower lows and lower highs that are recurrent, additive, qualified swing setups. Downtrends for all instruments are similar, except forex. They are fast and complete much quicker than uptrends. An average downtrend is 18 months, something which we will return to. An uptrend inception occurs when an instrument reaches a point where it fails to make a new low, then that low will be tested. After that, the instrument will either have a deep range retracement or it may take out the low slightly, resulting in a double-bottom. A swing must eventually form.
A simple way to roughly determine trend is to attempt to draw a line from three tops going upwards (uptrend) or a line from three bottoms going downwards (downtrend). It is not possible to correctly draw a downtrend line on the BTC chart, but it is possible to correctly draw an uptrend – indicating that the overall trend is downwards. The only mitigating factor is the impending stock market crash.

Time Symmetry Analysis of Bitcoin

Time is the movement from the past through the present into the future. It is a measurement in quantified intervals. In many ways, our perception of it is a human construct. It is more powerful than price as time may be utilized for a trade regardless of the market inflection point’s price. Were it possible to perfectly understand time, price would be totally irrelevant due to the predictive certainty time affords. Time structure is easier to learn than price, but much more difficult to apply with any accuracy. It is the hardest aspect of trading to learn, but also the most rewarding.
Humans do not have the ability to recognize every time window, however the ability to define market inflection points in terms of time is the single most powerful trading edge. Regardless, price should not be abandoned for time alone. Time structure analysis It is inherently flawed, as such the markets have a fail-safe, which is Price Structure. Even though Time is much more powerful, Price Structure should never be completely ignored. Time is the qualifier for Price and vice versa. Time can fail by tricking traders into counter-trend trading.
Time is a predestined trade quantifier, a filter to slow trades down, as it allows a trader to specifically focus on specific time windows and rest at others. It allows for quantitative measurements to reach deterministic values and is the primary qualifier for trends. Time structure should be utilized before price structure, and it is the primary trade criterion which requires support from price. We can see price structure on a chart, as areas of mathematical support or resistance, but we cannot see time structure.
Time may be used to tell us an exact point in the future where the market will inflect, after Price Theory has been fulfilled. In the present, price objectives based on price theory added to possible future times for market inflection points give us the exact time of market inflection points and price.
Time Structure is repetitions of time or inherent cycles of time, occurring in a methodical way to provide time windows which may be utilized for inflection points. They are not easily recognized and not easily defined by a price chart as measuring and observing time is very exact. Time structure is not a science, yet it does require precise measurements. Nothing is certain or definite. The critical question must be if a particular approach to time structure is currently lucrative or not.
We will measure it in intervals of 180 bars. Our goal is to determine time windows, when the market will react and when we should pay the most attention. By using time repetitions, the fact that market inflection points occurred at some point in the past and should, therefore, reoccur at some point in the future, we should obtain confidence as to when SPY will reach a market inflection point. Time repetitions are essentially the market’s memory. However, simply measuring the time between two points then trying to extrapolate into the future does not work. Measuring time is not the same as defining time repetitions. We will evaluate past sessions for market inflection points, whether discretes, qualified swings, or intra-range. Then records the times that the market has made highs or lows in a comparable time period to the future one seeks to trade in.
What follows is a time Histogram – A grouping of times which appear close together, then segregated based on that closeness. Time is aligned into combined histogram of repetitions and cycles, however cycles are irrelevant on a daily basis. If trading on an hourly basis, do not use hours.
  • Yearly Lows (last seven years): 1/1/13, 4/10/14, 1/15/15, 1/17/16, 1/1/17, 12/15/18, 2/6/19
  • Monthly Mode: 1, 1, 1, 1, 2, 4, 12
  • Daily Mode: 1, 1, 6, 10, 15, 15, 17
  • Monthly Lows (for the last year): 3/12/20 (10:00pm), 2/28/20 (7:09am), 1/2/20 (8:09pm), 12/18/19 (8:00am), 11/25/19 (1:00am), 10/24/19 (2:59am), 9/30/19 (2:59am), 8/29,19 (4:00am), 7/17/19 (7:59am), 6/4/19 (5:59pm), 5/1/19 (12:00am), 4/1/19 (12:00am)
  • Daily Lows Mode for those Months: 1, 1, 2, 4, 12, 17, 18, 24, 25, 28, 29, 30
  • Hourly Lows Mode for those Months (Military time): 0100, 0200, 0200, 0400, 0700, 0700, 0800, 1200, 1200, 1700, 2000, 2200
  • Minute Lows Mode for those Months: 00, 00, 00, 00, 00, 00, 09, 09, 59, 59, 59, 59
  • Day of the Week Lows (last twenty-six weeks):
Weighted Times are repetitions which appears multiple times within the same list, observed and accentuated once divided into relevant sections of the histogram. They are important in the presently defined trading time period and are similar to a mathematical mode with respect to a series. Phased times are essentially periodical patterns in histograms, though they do not guarantee inflection points
Evaluating the yearly lows, we see that BTC tends to have its lows primarily at the beginning of every year, with a possibility of it being at the end of the year. Following the same methodology, we get the middle of the month as the likeliest day. However, evaluating the monthly lows for the past year, the beginning and end of the month are more likely for lows.
Therefore, we have two primary dates from our histogram.
1/1/21, 1/15/21, and 1/29/21
2:00am, 8:00am, 12:00pm, or 10:00pm
In fact, the high for this year was February the 14th, only thirty days off from our histogram calculations.
The 8.6-Year Armstrong-Princeton Global Economic Confidence model states that 2.15 year intervals occur between corrections, relevant highs and lows. 2.15 years from the all-time peak discrete is February 9, 2020 – a reasonably accurate depiction of the low for this year (which was on 3/12/20). (Taking only the Armstrong model into account, the next high should be Saturday, April 23, 2022). Therefore, the Armstrong model indicates that we have actually bottomed out for the year!
Bear markets cannot exist in perpetuity whereas bull markets can. Bear markets will eventually have price objectives of zero, whereas bull markets can increase to infinity. It can occur for individual market instruments, but not markets as a whole. Since bull markets are defined by low volatility, they also last longer. Once a bull market is indicated, the trader can remain in a long position until a new high is reached, then switch to shorts. The average bear market is eighteen months long, giving us a date of August 19th, 2021 for the end of this bear market – roughly speaking. They cannot be shorter than fifteen months for a central-bank controlled market, which does not apply to Bitcoin. (Otherwise, it would continue until Sunday, September 12, 2021.) However, we should expect Bitcoin to experience its’ exponential growth after the stock market re-enters a bull market.
Terry Laundy’s T-Theory implemented by measuring the time of an indicator from peak to trough, then using that to define a future time window. It is similar to an head-and-shoulders pattern in that it is the process of forming the right side from a synthetic technical indicator. If the indicator is making continued lows, then time is recalculated for defining the right side of the T. The date of the market inflection point may be a price or indicator inflection date, so it is not always exactly useful. It is better to make us aware of possible market inflection points, clustered with other data. It gives us an RSI low of May, 9th 2020.
The Bradley Cycle is coupled with volatility allows start dates for campaigns or put options as insurance in portfolios for stocks. However, it is also useful for predicting market moves instead of terminal dates for discretes. Using dates which correspond to discretes, we can see how those dates correspond with changes in VIX.
Therefore, our timeline looks like:
  • 2/14/20 – yearly high ($10372 USD)
  • 3/12/20 – yearly low thus far ($3858 USD)
  • 5/9/20 – T-Theory true yearly low (BTC between 4863 and 3569)
  • 5/26/20 – hashrate difficulty halvening
  • 11/14/20 – stock market low
  • 1/15/21 – yearly low for BTC, around $8528
  • 8/19/21 – end of stock bear market
  • 11/26/21 – eighteen months from halvening, average peak from halvenings (BTC begins rising from $3000 area to above $23,312)
  • 4/23/22 – all-time high
Taken from my blog: http://aliamin.info/2020/
submitted by aibnsamin1 to Bitcoin [link] [comments]

Staking in Ethereum 2.0: when will it appear and how much can you earn on it?

Staking in Ethereum 2.0: when will it appear and how much can you earn on it?

Staking in Ethereum 2.0: when will it appear and how much can you earn on it?

Why coin staking will be added in Ethereum 2.0

A brief educational program for those who do not follow the update of the project of Vitalik Buterin. Ethereum has long been in need of updating, and the main problem of the network is scalability: the blockchain is overloaded, transactions are slowing down, and the cost of “gas” (transaction fees) is growing. If you do not update the consensus algorithm, then the network will someday cease to be operational. To avoid this, developers have been working for several years on moving the network from the PoW algorithm to state 2.0, running on PoS. This should make the network more scalable, faster and cheaper. In December last year, the first upgrade phase, Istanbul, was implemented in the network, and in April of this year, the Topaz test network with the possibility of staking was launched - the first users already earned 1%. In the PoS algorithm that Ethereum switches to, there is no mining, and validation occurs due to the delegation of user network coins to the masternodes. For the duration of the delegation, these coins are frozen, and for providing their funds for block validation, users receive a portion of the reward. This is staking - such a crypto-analogue of a bank deposit. There are several types of staking: with income from dividends or masternodes, but not the device’s power, as in PoW algorithms, but the number of miner coins is important in all of them. The more coins, the higher the income. For crypto investors, staking is an opportunity to receive passive income from blocked coins. It is assumed that the launch of staking:
  • Will make ETH mining more affordable, but less resource intensive;
  • Will make the network more secure and secure - attacks will become too expensive;
  • Will create an entirely new sector of steak infrastructure around the platform;
  • Provides increased scalability, which will create the opportunity for wider implementation of DeFi protocols;
  • And, most importantly, it will show that Ethereum is a developing project.

The first payments to stakeholders will be one to two years after the launch of the update

The minimum validator steak will be 32 ETN (≈$6092 for today). This is the minimum number of coins that an ETH holder must freeze in order to qualify for payments. Another prerequisite is not to disconnect your wallet from the network. If the user disconnects and goes into automatic mode, he loses his daily income. If at some point the steak drops below 16 ETH, the user will be deprived of the right to be a validator. The Ethereum network has to go through many more important stages before coin holders can make money on its storage. Collin Myers, the leader of the product strategy at the startup of the Ethereum developer ConsenSys, said that the genesis block of the new network will not be mined until the total amount of frozen funds reaches 524,000 ETN ($99.76 million at the time of publication). So many coins should be kept by 16,375 validators with a minimum deposit of 32 ETN. Until this moment, none of them will receive a percentage profit. Myers noted that this event is not tied to a clear time and depends on the activity of the community. All validators will have to freeze a rather significant amount for an indefinite period in the new network without confidence in the growth of the coin rate. It’s hard to say how many people there are. The developers believe that it will take 12−18 or even 24 months. According to the latest ConsenSys Codefi report, more than 65% of the 300 ETH owners surveyed plan to use the staking opportunity. This sample, of course, is not representative, but it can be assumed that most major coin holders will still be willing to take a chance.

How much can you earn on Ethereum staking

Developers have been arguing for a long time about what profitability should be among the validators of the Ethereum 2.0 network. The economic model of the network maintains an inflation rate below 1% and dynamically adjusts the reward scale for validators. The difficulty is not to overpay, but not to pay too little. Profitability will be variable, as it depends on the number and size of steaks, as well as other parameters. The fewer frozen coins and validators, the higher the yield, and vice versa. This is an easy way to motivate users to freeze ETN. According to the October calculations of Collin Myers, after the launch of Ethereum 2.0, validators will be able to receive from 4.6% to 10.3% per annum as a reward for their steak. At the summit, he clarified that the first time after the launch of the Genesis block, it can even reach 20.3%. But as the number of steaks grows, profitability will decline. So, with five million steaks, it drops to about 6.6%. The above numbers are not net returns. They do not include equipment and electricity costs. According to Myers, after the Genesis block, the costs of maintaining the validator node will be about 4.75% of the remuneration. They will continue to increase as the number of blocked coins increases, and with a five millionth steak, they will grow to about 14.7%. Myers emphasized that profitability will be higher for those who will work on their own equipment, rather than relying on cloud services. The latter, according to his calculations, at current prices can bring a loss of up to minus 15% per year. This, he believes, promotes true decentralization. At the end of April, Vitalik Buterin said that validators will be able to earn 5% per annum with a minimum stake of 32 ETH - 1.6 ETH per year, or $ 304 at the time of publication. However, given the cost of freezing funds, the real return will be at 0.8%.

How to calculate profitability from ETN staking

The easiest way to calculate the estimated return for Ethereum staking is to use a special calculator. For example, from the online services EthereumPrice or Stakingrewards. The service takes into account the latest indicators of network profitability, as well as additional characteristics: the time of operation of a node in the network, the price of a coin, the share of blocked ETNs and so on. Depending on these values, the profit of the validator can vary greatly. For example, you block 32 ETNs at today's coin price - $190, 1% of the coins are blocked, and the node works 99% of the time. According to the EthereumPrice calculator, in this case your yield will be 14.25% per annum, or 4.56 ETH.
Validator earnings from the example above for 10 years according to EthereumPrice.
If to change the data, you have the same steak, but the proportion of blocked coins is 10%. Now your annual yield is only 4.51%, or 1.44 ETH.
Validator earnings from the second example over 10 years according to EthereumPrice.
It is important that this is profitability excluding expenses. Real returns will be significantly lower and in the second case may be negative. In addition, you must consider the fluctuation of the course. Even with a yield of 14% per annum in ETN, dollar-denominated returns may be negative in a bear market.

When will the transition to Ethereum 2.0 start

Ben Edgington from Teku, the operator of Ethereum 2.0, at the last summit said that the transition to PoS could be launched in July this year. These deadlines, if there are no new delays, were also mentioned by experts of the BitMEX crypto exchange in their recent report on the transition of the Ethereum ecosystem to stage 2.0. However, on May 12, Vitalik Buterin denied the possibility of launching Ethereum 2.0 in July. The network is not yet ready and is unlikely to be launched before the end of the year. July 30 marks the 5th anniversary of the launch of Ethereum. Unfortunately, it seems that it will not be possible to start the update for the anniversary again. Full deployment of updates will consist of several stages. Phase 0. Beacon chain. The "zero" phase, which can be launched in July this year. In fact, it will only be a network test and PoS testing without economic activity, but it will use new ETN coins and the possibility of staking will appear. The "zero" phase will test the first layer of Ethereum 2.0 architecture - Lighthouse. This is the Ethereum 2.0 client in Rust, developed back in 2018. Phase 1. Sharding - rejection of full nodes in favor of load balancing between all network nodes (shards). This should increase network bandwidth and solve the scalability problem. This is the first full phase of Ethereum 2.0. It will initially be deployed with 64 shards. It is because of sharding that the transition of a network to a new state is so complicated - existing smart contracts cannot be transferred to a new network. Therefore, at first, perhaps several years, both networks will exist simultaneously. Phase 2. State execution. In this phase, various applications will work, and it will be possible to conclude smart contracts. This is a full-fledged working Ethereum 2.0 network. After the second phase, two networks will work in parallel - Ethereum and Ethereum 2.0. Coin holders will be able to transfer ETN from the first to the second without the ability to transfer them back. To stimulate network support, coin emissions in both networks will increase until they merge. Read more about the phases of transition to state 2.0 in the aforementioned BitMEX report.

How the upgrade to Ethereum 2.0 will affect the staking market and coin price

The transition of the second largest coin to PoS will dramatically increase the stake in the market. The deposit in 32 ETH is too large for most users. Therefore, we should expect an increase in offers for staking from the exchanges. So, the launch of such a service in November was announced by the largest Swiss crypto exchange Bitcoin Suisse. She will not have a minimum deposit, and the commission will be 15%. According to October estimates by Binance Research analysts, the transition of Ethereum to stage 2.0 can double the price of a coin and the stake of staking in the market, and it will also make ETH the most popular currency on the PoS algorithm. Adam Cochran, partner at MetaCartel Ventures DAO and developer of DuckDuckGo, argued in his blog that Ethereum's transition to state 2.0 would be the “biggest event” of the cryptocurrency market. He believes that a 3–5% return will attract the capital of large investors, and fear of lost profit (FOMO) among retail investors will push them to actively buy coins. The planned coin burning mechanism for each transaction will reduce the potential oversupply. However, BitMEX experts in the report mentioned above believe that updating the network will not be as important an event as it seems to many, and will not have a significant impact on the coin rate and the staking market. Initially, this will be more likely to test the PoS system, rather than a full-fledged network. There will be no economic activity and smart contracts, and interest for a steak will not be paid immediately. Therefore, most of the economic activity will continue to be concluded in the original Ethereum network, which will work in parallel with the new one. Analysts of the exchange emphasized that due to the addition of staking, the first time (short, in their opinion) a large number of ETNs will be blocked on the network. Most likely, this will limit the supply of coins and lead to higher prices. However, this can also release some of the ETNs blocked in smart contracts, and then the price will not rise. Moreover, the authors of the document are not sure that the demand for coins will be long-term and stable. For this to happen, PoS and sharding must prove that they work stably and provide the benefits for which the update was started. But, if this happens, the network is waiting for a wave of coins from the developers of smart contracts and DeFi protocols. In any case, quick changes should not be expected. A full transition to Ethereum 2.0 will take years and won’t be smooth - network failures are inevitable. We also believe that we should not rely on Ethereum staking as another panacea for all the problems of the coin and the market. Most likely, the transition of the network to PoS will not have a significant impact on the staking market, but may positively affect the price of the coin. However, relying on the ETN rally in anticipation of this is too optimistic.
Subscribe to our Telegram channel
submitted by Smart_Smell to Robopay [link] [comments]

Forbes solves the "Impossible Triangle" problem

Forbes solves the

https://preview.redd.it/crbhgda6c0651.png?width=640&format=png&auto=webp&s=522357d06b1f3c893f996dbd3b79aab5461e4dfb
Blockchain has been described as an omnipotent technology since its inception. It is expected to affect all walks of life and even reshape production relations. However, blockchain itself has a technical bottleneck called "Impossible Triangle", which is still far from its potential. The so-called "Impossible Triangle" of blockchain, also known as the "ternary paradox", means that no matter which consensus mechanism is adopted by blockchain network to determine the generation mode of new blocks, it cannot take into account the three requirements of throughput, security and decentralization at the same time.
For example, bitcoin can theoretically guarantee security and decentralization on the basis of large amount of computing power. But the disadvantage is that it is difficult to improve throughput, slow speed and high cost. EOS, which is said to take improving throughput as an important technological breakthrough, adopts the consensus mechanism of dpos, greatly reducing the number of nodes and being criticized for sacrificing the essence of decentralization. Although the "king of ten thousand chains" Ethereum has the partition technology as the solution of capacity expansion, it can't fall down because of the technical difficulty.
Forbes uses "zero knowledge proof" technology, greatly improves throughput without sacrificing decentralization, and solves the "Impossible Triangle" problem that has plagued the blockchain industry for many years.
1、 Zero knowledge proof
First, we introduce the concept of lower zero knowledge proof. Zero knowledge proof, as the name implies, is not only to fully prove that they are the legitimate owners of certain rights and interests, but also not to disclose relevant information - that is to say, the "knowledge" to the outside world is "zero". The certifier proves to the verifier and makes him believe that he knows or has some information, but the proving process cannot disclose any information to the verifier.
Case 1: a wants to prove to B that he has the key of a room. Suppose that the room can only open the lock with the key, and no other method can open it. There are two ways:
① A shows the key to B, and B uses the key to open the lock of the room, so as to prove that a has the correct key of the room.
② B. make sure that there is an object in the room. A opens the door of the room with his own key, and then takes the object out and shows it to B, so as to prove that he does have the key of the room.
The second method belongs to zero knowledge proof. Its advantage is that in the whole process of proof, B can never see the appearance of the key, thus avoiding the leakage of the key.
Case 2: there is a circular corridor. The exit and the entrance are the same, but there is a door that can only be opened with a key somewhere in the middle of the corridor. A needs to prove to B that he has the key to the door. With zero knowledge proof, B looks at a entering the corridor from the entrance and then going out of the corridor from the exit. At this time, B does not get any information about the key, but it can completely prove that a has the key.
https://preview.redd.it/psbzg9ylc0651.png?width=571&format=png&auto=webp&s=6d58835a211e4d391112cf39720f4aaecda869f6
A large number of facts prove that zero knowledge proof is very useful in cryptography. If zero knowledge proof can be used for verification, many problems will be solved effectively. So how does Forbes use zero knowledge proof to improve TPS?
2、 Second floor expansion
It is difficult to solve the "Impossible Triangle" problem if you directly modify the blockchain architecture itself to improve the throughput. After all, the more nodes, it is very difficult to improve the TPS technology on the premise of decentralization. But Forbes thought of the "curve saving the nation" scheme, that is, without changing the blockchain itself, to improve the TPS by setting the second layer architecture.
Here is a case in life:
If the Forbes public chain is regarded as a real-life bank, and the transfer operation is carried out on the Forbes public chain, it is like handling the transfer business in the bank's counter, but the difference is that the bank is centralized and the blockchain is decentralized.
In the case of few people, it's easy for users to handle the transfer business in the bank, but once there are more people, it's easy to form a long queue, which makes the users in the back have a long wait. Blockchain is like a bank. When there are more people in the transfer queue, there will be a block. So to improve the throughput of blockchain is how to improve the speed of bank transfer business.
But the bank is so big. There are so many bank staff (you can compare the bank staff to the nodes of the blockchain). It is very difficult for the bank to improve the speed of handling the transfer business. This makes the people behind the line angry, but they have no choice.
https://preview.redd.it/euxut33zc0651.png?width=658&format=png&auto=webp&s=899292e272be66b1ead3113db0d21fd9d8985dca
Finally, one of the people at the back of the line couldn't bear to wait. He stood up and said, "we can't wait. We have to find ways to improve our efficiency." And they said to him, you are not a banker. What can you do. So, the man said confidently, "let's see my operation and cooperate with me.".
Only the person pulls out a book for bookkeeping, starts from the fifth person in line, records the balance of each person's account after transfer in detail, and then asks each person to confirm that the note book is authorized by hand print. Then after the last person records, he gets an account book for recording the final balance of the owner's account. Although there is no specific transfer record in this account book, it is recorded accurately Record the balance of each person's transfer. Although some people transfer to each other many times, no matter how many times they transfer, people only care about the balance of their final account
After that person's statistics, just in time, the fourth person in line finished the transfer at the bank. Then he walked into the bank with this account book and said that this was the account balance after the fifth person started the transfer of all the people. The bank only needs to change the account balance of these people in the system.
At the first sight of the bank, it's not easy. The staff swiped it and changed all the balances of these accounts at once, so that the bank's handling of transfer business increased by several hundred times.
This is how Forbes is implemented. By setting the second level node, which is called relay, let relay collect the account transfer information of queued users and verify the user's signature. After calculation, integrate the token balance information of the final address into the Merkel tree and submit it to the chain, and then process it at one time.
We call this method of improving the block chain TPS "the second layer expansion".
At first glance, this scheme is perfect, but there are various problems in practical operation. For example:
  1. How can the bank believe that the person with the final account book actually counts the transfer requests of all the queuers?
  2. What if this person, because of personal grudges, intentionally misses the statistics for those who don't like it?
  3. What if this person secretly changes the account balance on the way to the bank?
At this time, zero knowledge proof will be of great use.

https://preview.redd.it/25p5vrb9d0651.png?width=599&format=png&auto=webp&s=9d07cb226d1f6f318703c76c5f4d9000b370145a
3、 Zero knowledge proof + second layer expansion + smart contract
To solve the above problems is actually to solve the problem of trust. The bank is not stupid. It's OK to let the bank send its own staff. Each staff sent by the bank will issue a "work permit" and an open box with a lock before departure. When you count transfers for people in line, the account book is safe, because people will supervise him. When you count the last person, the staff will put the account book into a locked box and close it. In this way, on the way to the bank, the staff can't do evil and modify the account data. After arriving at the bank, the bank only recognizes the "work permit" and confirms that it is its own staff. Without opening the locked box, it can be determined that this person is indeed trustworthy.
It can be seen that in the whole process, the bank gets ZERO account information, but believes that the transfer data counted by this person is safe and reliable, which is zero knowledge proof.
The principle of Forbes technology is exactly the same. The main chain will use the zero knowledge circuit to generate the certificate called proof. When relay counts the transfer information of users, it will finally package and submit the general ledger Merkel tree, and use proof to encrypt. After the main chain sees the encrypted package, it will use proof to decrypt, perform the calculation of modifying the address token balance, and then broadcast to the whole node.
But there is still a problem that hasn't been solved, that is, what should staff do if they intentionally miss the bookkeeping of people who don't look good? Or the staff ask for a tip from the user. If they don't tip, they don't charge. What should we do?
In fact, it's also easy to handle. People who miss the account or are asked for tips will definitely complain to the bank angrily. After the bank checks, they only need to deduct the balance of the staff's account.
Here Forbes will arrange smart contracts on the main chain, and require the added relay to mortgage a sufficient number of GFS on the main chain. If relay misses the user transfer request or intentionally increases the transfer fee, the main chain will deduct the pledge GFS of relay through the smart contract to compensate the user's loss.
See here, congratulations on finally understanding the technical solution of Forbes to improve TPS. Under the support of huge distributed mining pool, Forbes not only has a large number of nodes to provide ultra-high security and decentralization, but also uses zero knowledge proof + second expansion + smart contract to easily increase TPS to more than 10000, which solves the "Impossible Triangle" problem of blockchain.
I think you must have noticed the details of the pledge of GFS by relay. If smart people don't explain, they can predict the future value of GFS from the details.
submitted by forbeschain to u/forbeschain [link] [comments]

White Paper, Miner, Pizza … | "Old Objects" in the Cryptocurrency Museum

White Paper, Miner, Pizza … |
https://preview.redd.it/giu1ssilga151.jpg?width=900&format=pjpg&auto=webp&s=41510785ccdc0d99544ec74229f62427d1c0ce3e
Museum has played the role of a time recorder. Talking about bitcoin, more than ten years has passed since the creation of it. Although it is uncomparable to the stock market with a hundred years of history, during the ten years, in the different stages of the development of bitcoin and blockchain have continuously poured in geeks, miners, speculators, newbies, leaving keywords such as sudden rich, myth, scam, belief, revolution, etc.
There are also many “old objects” with stories in the “Museum” of the cryptocurrency realm. On Museum Day, let ’s review the stories brought by these “old objects”.
The First Digital Currency White Paper — Bitcoin White Paper
On Oct. 31, 2008, Satoshi Nakamoto released the Bitcoin white paper — A Peer-to-Peer Electronic Cash System in the cryptographic mail group where he belongs, and Bitcoin was born since then.
A white paper is a document that explains the purpose and technology used in cryptocurrency. Usually a cryptocurrency uses the white paper to help people understand what it provides, and it is also an important information channel for investors to understand a project. Therefore, the level of the white paper affects people’s confidence towards the coin.
In a word, in the cryptocurrency and blockchain industry, the value of a white paper is equivalent to that of a standard financing speech. The white paper plays a vital role in this emerging market.
The First Public Bitcoin-Physical Transaction — Pizza
Since Satoshi Nakamoto mined the Bitcoin genesis block on January 3, 2009, Bitcoin has only been spread among the small crowd and has not realized its value.
Not until May 22, 2010, Bitcoin enthusiast “Laszlo Hanyecz” bought a pizza coupon worth $25 with 10,000 bitcoins. This is the first public bitcoin-physical transaction. Bitcoin has its price with 0.3 cents per bitcoin.


This day has also become the famous “Bitcoin Pizza Day” in Bitcoin history. Bitcoin as the imagination of the financial system has more practical significance. The tenth anniversary is coming. How will you commemorate it? Will you buy a pizza?
The First Digital Asset Exchange — Bitcoinmarket.com
After the birth of Bitcoin, in addition to mining, the only way to get Bitcoin in the early days was to conduct transactions on forums or IRC (commonly known as Internet Relay Chat). However, this method involves both long transaction time and great security risk.
In March 2010, the first digital asset exchange — Bitcoinmarket.com launched. However, due to lack of liquidity and transaction depth, it disappeared soon after its establishment, but Bitcoinmarket.com opened the era of the operation of the cryptocurrency realm exchange 1.0.


On June 9, 2011, China’s first Bitcoin exchange — Bitcoin China (BTCChina) launched. Its founder, Yang Linke, translated Bitcoin into Chinese “比特币” for the first time. In 2013, China’s bitcoin trading entered the golden age, and exchanges sprung up. China monopolized more than 90% of the world’s bitcoin transactions. Now, if the top three exchanges Binance, Huobi Global, OKEx are the Exchange 2.0, then the index exchange represented by 58COIN called the 3.0 version, leading the trend.
The First Generation of High-Performance Miner — ASIC Miner
When Satoshi Nakamoto created Bitcoin, the only way to get it is to use computers (including home computers) to mine, mainly relying on the CPU to calculate. However, as the value of digital currencies such as Bitcoin has become higher and higher, mining has become an industry with the competition is getting fiercer, accompanied by increasing difficulty of mining. Therefore, hardware performance competition starts.
In July 2012, the genius Jiang Xinyu (Internet nickname is “Friedcat”) from the junior class of the University of Science and Technology declared at the forum that he could make ASIC miners (chips). As far as mining computing power is concerned, ASICs can be tens of thousands or more higher than the same-generation CPUs and GPUs.
At the beginning of 2013, Zhang Nanqian (Pumpkin Zhang), a suspended doctoral student from the Beijing University of Aeronautics and Astronautics, developed the ASIC miner and named it “Avalon”.


In June 2013, the Friedcat’s miner USB was finally released, and it maintained 20% of the computing power of the entire network.
At the end of 2013, Wu Jihan, used the tens of millions yuan earned from Friedcat through investment, worked together with Jenke group, to develop the Antminer S1. Since then, the miner manufacturer Bitmain began to enter the stage of history.
It is no exaggeration to say that Friedcat and Zhang Nangeng have opened the domestic “mining” era.
The Birthplace of China’s Bitcoin — Garage Coffee
It is not only the “old objects” that record history, but also a place that everyone in the cryptocurrency realm aspires to.
Guo Hongcai once said, “Without no The Garage Café, there will be no cryptocurrency realm today. Since it is a very mysterious place that all waves of people from the café joint together to create today’s digital asset industry.

▲ In March 2013, American student Jake Smith successfully purchased a cup of coffee at The Garage Café with 0.131 bitcoins. This move attracted the attention of CCTV, and it conducted an interview.
Indeed, The Garage Café is the world ’s first entrepreneurial-themed coffee shop. It has been legendary since its establishment in 2011. The Garage Cafét is not only the core coordinate on China’s Bitcoin map, but also the birthplace of the Chinese cryptocurrency circle, where digital asset realm tycoons including Guo Hongcai, Zhao Dong, Li Xiaolai, Li Lin have made their ways.
The development of digital currency is only 11 years old. Through these “old objects”, we review the various stories of this wave of technology together, hoping to help you understand the development process of the digital currency field. Meanwhile, I also remind all practitioners to use history as a mirror and forge ahead.
Website: https://www.58ex.com/
Twitter: https://twitter.com/58_coin
Facebook: https://www.facebook.com/coin.58COIN
Telegram: https://t.me/official58
Medium: https://medium.com/@58coin_blog/
submitted by 58CoinExchange to u/58CoinExchange [link] [comments]

The 8 Skills to Be a Good Miner

Many people may feel quite confused about their low profit now. Maybe you forget to think about the small details when you are mining. Small little details will make big difference in your final income.
Now, i want to share you the 8 skills to improve your benefits.
1, Get a cheaper power
Everyone knows the power is the most charge in mining, if we can find a cheaper electricity, it will be good. So, how to get a cheaper electricity?
55% of the mining is in China, and 40% of the mining is in Sichuan China. Why? Because there are many hydroelectric power station in there. So, you can find a place near the station and get a cheaper electricity from them.
If you can find free electricity, it is the best anyway
2, Choose low w/t machine
As you know, low comsuption machine is very popular those days, like S17 pro 53t, T17 42t. They are 7nm technical, the w/t is low and it can even overclock, it maybe a good choice. Also, we need to consider the price of machine.
Cheap price machine means fast ROI, But low W/T machine has a bright future.
3, Buy miner when BTC begin to raise after long drop
When BTC price keep falling, of course the machine will be cheaper and cheaper. When the BTC price begin to raise, we can buy miner at that time, because the price is the cheapset and you can earn money back soon.
Normally at that time, the good machine will be sold out quickly, when the market feedback that those machine are good, you may be late to get the chance. So, make your plan for purchasing before, when price down, get them.
4, Do not forget BCH, BSV, ZEN coin
Do remember SHA-256 Algorithm can mining BCH and BSV as well. Sometimes those coin may get even a better profits than BTC.
Some miner has auto setting for BTC, but you can choose BSV and BCH mining if you set it,
5, Notice the half reward period information
Because the half reward time is coming in 2020, there will be a chance or a risk for it. Many low hashrate machine may be out of the style and high hashrate will be more competitive.
Low your risk and not to buy those cheap machine now
6, Choose a good future crypto currency
There are many coins in this field now, we need to analyse and find a better direction for mining. Like Z11, many people use it for ZEN mining nowadays, and their benefits is top now.
Also, people buy many S17, it can earn money back before next year half reward time. And they believe the BTC price will increase creazily as last two times.
7, Make plan for your selling of coin or machine
As you know, the price of the BTC changes everytime, we can mining the BTC first and keep it in hand, do not sell it every day. It is very stupid. Just sell it when price high, you do not need to take any risk if you do not buy BTC directy. We do not need to care about the low price situation, we only need to wait. When chance come, get it.
Same for machine
8. Don't be fooled by the mining calculator
Many sites calculate mining profits based on hardware and electricity prices. If you've never mined before, you might be happy to see the numbers provided by these websites and calculators and think, "I'll make a fortune!"
However, these websites don't tell you: in addition to the cost of electricity, there may be other current costs, such as maintenance, cooling, rent, labor, etc. Generally, the hash rate and power consumption of the device are slightly different from what the factory says.
This difference is more common in unpopular brands. You can better understand the actual hash rate and the actual power consumption by watching the miner test video on YouTube. In addition, depending on the distance from the meter to the device and the type of cable used, the power loss from the meter to the device can be as high as 200 watts.
In addition to the cost of mining machines, some initial costs are required to prepare the infrastructure, such as cooling and venting, cabling and distribution, shelves, network and monitoring equipment, safety measures, etc.
The network difficulty is constantly changing and increasing at a significant speed, which directly affects the mining revenue. You can check the bitcoin network difficulty chart to see its growth rate, but your miner will not always be 100% active.
Due to maintenance, network problems, ore pool problems, power problems and many other problems, the miner may be offline for several hours. I suggest that you consider setting the normal operation time of the miner to less than 97% when calculating. We have rich mining experience in professional ore pools, and the normal operation time of these mining machines will not exceed 97-98%.
Thats all, hope those information will help you become a good mining investor.
submitted by 15Ansel to BitcoinMining [link] [comments]

In depth interview with Mr. Feng: MW is not only the commercial incentive layer of IPFS

Why did early bitcoin players play MW?Why is blockchain + distributed storage the only industry that can combine mining with practice?How can human beings do things beneficial to social storage while consuming a lot of resources?Special guest Mr. Feng: early believers in bitcoin, co-founder ofMirror World Network MW, to solve our doubts one by one!
Hello, I'm Mr.Feng. I started my business in 2012.I'm an early believer in bitcoin. After two years of silence, I returned to the industry with the help of a group of friends.During this period, a lot of research has been done on distributed storage, including IPFS. So this project is also about the field of distributed storage. I think blockchain + distributed storage is the only industry that can combine mining with practice. While human beings consume a lot of resources, it can also be a commercial storage network beneficial to society. MW is a mature landing project that applies IPFS technology to actual storage, and creates a feasible solution for the landing of blockchain industry.
1. I believe that after your self introduction, many audience friends are concerned about what mirror network is doing recently. Can you share it with audience friends?What achievements have mirror network made in these years?
MW is building an easy-to-use and available distributed storage network, which creates a new computing paradigm and collaboration mode of low-cost trust building in an untrusted competitive environment.We have three years of technical precipitation and have drawn on the experience of IPFS, Alibaba cloud OSS, stoij and other technologies at home and abroad. At present, the code base is close to 900000 lines, and it will also be open-source in the future. Before that, we have run a relatively stable internal test network, and many friends have participated in it.In the next three to four months, we will release our technical achievements, including practical cases, and leave a message for you.
2.What the difference between MW and filecoin?What is the core competitiveness of MW?
I believe you have known IPFS for a long time. Filecoin is the incentive layer of IPFS. To put it simply, it is the financing tool of IPFS. It was dazzling at that time.At the same time, storj and SIA did well.We also chose this way at that time. The original intention of MW is to do real distributed storage. I think MW different from filecoin in terms of starting point. The core competitiveness of MW is technology inclusiveness. We integrate decentralized storage protocol and centralized storage protocol to solve the game between decentralized storage protocol, regulatory layer and practicability.
3.Now, MW public chain has been able to apply IPFS technology to actual storage very mature, and it is the only one.what kind of difficulties did MW encounter and how did you solve them?
In January, we asked for opinions on a small scale in the industry. At that time, we fully demonstrated the storage function and blockchain information, which was unanimously recognized by everyone.Because the team is mainly technical members, the economic model should be the biggest difficulty. After extensive collection of opinions, we adjusted it no less than ten times. Finally, we chose the open and inclusive community governance scheme. There is no model, fair competition, and community motivation is our goal.
4.MW will open the test network on April 18,How should interested users participate in the test?Is there a reward for the test?
Yes, the public beta will be officially launched on April 18, 2020. It will be divided into three stages: pioneer, union and world. You can go to mw.run see the road map , there is a threshold at the earliest stage of the pioneer stage. We need to manually authenticate the added equipment to ensure the stability and robustness of the initial stage of the network, but there will be no block reward, only contribution reward provided by the foundation.After the network is stable, we will open up the block reward and enter the computing power contest period. There will be rewards in the whole public beta stage. You only need to send an email to: [email protected] to apply for joining.
5. Distributed storage mining has always been a concern of miners. What should be paid attention to when mining in MW test network?What are the requirements for mining machines?What factors will affect the mining revenue?
I like to share with you the consensus mechanism of MW. In order to make more storage devices join the MW ecosystem more fairly, and further increase the number of stable nodes in the network to improve the network dispersion, MW adopts DPoS consensus and POC consensus based on weight table.How to understand this? In fact, MW is a very inclusive project. Simply speaking, it is as simple as bitcoin mining through the competition for computing power!We have a set of strict weight calculation and distribution mechanism, which is equivalent to the law of the whole network. It will be announced in genesis block. At present, the size of storage space has the most direct impact on the income. In addition, we have a unique mining pool system, where everyone can establish a mining pool and participate in mining dividends together without having equipment.We don't have too many requirements for mining machines. At present, we only have requirements for network environment, and we need public IP.
6.In your opinion, what is the real "visual" IPFS storage system?How MW achieve "availability" and "ease of use" when building a distributed file storage network?
"Visualization" is actually very easy to understand, that is, it can be seen and felt.Now we have developed a complete visual storage path, and MW is a typical representative of visual storage.Here I highly recommend our internal measurement network that you experience. Like using a network disk, your files can be segmented, hashed and encrypted after uploading. Finally, they can be completely recovered and downloaded. We also made a short tutorial, which can be watched and understood by interested friends.In addition, our goal is to make the IPFS distributed storage system available to all ordinary people, rather than setting too high a threshold, which represents ease of use and availability.
If you want to participate in the internal test, you can contact us before April 18 to register. We will also provide 1000 coins for free.After the test network was officially launched on April 18, all data of the internal test will be reset.
7. IPFS commercial incentive layer, but also what value can MW provide us?What is the ultimate vision of the MW?
MW network can do the following:
a.establish an open distributed blockchain storage network, form a multi chain ecology with existing networks and public chains, and complete data and value transmission.
b.set up a component distributed storage network with idle storage resources in the enterprise and individuals, and deploy various public chains, storage networks and individual nodes.
c.build a global distributed cloud storage compatible with IPFS, public cloud storage and private cloud storage.
Secondly, we need to talk about our collective chain architecture. In the public chain part, MW is an open blockchain + distributed storage system, which mainly provides benefits for the miners and maintains the stability of the network. We will also make an alliance chain in China. MW will become an application network of small distributed data center, providing users with low cost, security and high private storage services can also be used to supervise and audit enterprises and governments in some specific fields or scenarios.
Finally, we can provide data backup, verification and query services for other public chain (open source chain) data.MW is an underlying system focusing on distributed storage.
8.Security has always been a key concern of people. In terms of data security, how does the mirror network ensure data security?
Data loss and privacy are the focus of data storage. I'm sure you have heard a lot of news, including customer information disclosure, downtime, server crash, selling customer privacy and so on. In fact, this is some of the problems that central storage will face. With the continuous growth of data and the improvement of people requirements for data security, the data storage mode is also generating iterations, and IPFS protocol is a very good solution to the privacy processing,On the basis of IPFS, MW also uses technologies such as file segmentation, multi backup, encryption, multi role, data correction and deletion to ensure the data security of users.One of the simplest understandings is that we will always copy three file fragments automatically in the network node to ensure the data security.
9.With the advent of 5g cloud computing era, people have new requirements for bandwidth and traffic. How is the layout of MW?How will distributed storage develop in the future?
We are full of expectations for 5g era, which is one of the reasons why we have only launched MW until now. The small distributed storage computing center close to users is more suitable for the needs of the future era. We will set up a demonstration data center in the public test network, and conduct commercial demonstration for the storage space provided by enterprises.
At the end of last year, I read a research report jointly issued. By 2023, the data storage volume will be twice that of 2019. At present, the industry is in a high-speed development stage, in which distributed storage will enter the mainstream storage market. We have planned a three-year development path, starting with cold data, such as archived data, infrequently called data, etc., public chain miner Hosting as a data center is the business model of our alliance chain. Compared with the traditional data center or cloud, we have a natural price advantage. We can even achieve 10% of the price of Tencent cloud and Alibaba cloud equivalent products. When 5g / 6G is mature, we will enter the mainstream storage market.
In the future, we also hope that global storage, open-source public chains, and enterprises and individuals with storage resources can join Mirror World Network to provide a solid infrastructure for future storage methods, and obtain appropriate rewards.
submitted by MirrorWorldNetwork to u/MirrorWorldNetwork [link] [comments]

How to Assess the Value behind Cryptocurrencies

How to Assess the Value behind Cryptocurrencies

https://preview.redd.it/5ihj6bi79dr41.jpg?width=6480&format=pjpg&auto=webp&s=babfa7255e9c017508197ec0bc7319d74b1050c9
Many of the investors and financial institutions that I talk to are hesitant to invest in cryptocurrencies, often saying that they can’t determine their real value. For example, if we were looking to buy equity in a company, we could look at its fundamentals and make a prudent decision about whether to invest in it or not. Crypto is different in that, it is in its early days and cannot present evidence of a long track record.
Admittedly, the process of value assessment may not be as straightforward for cryptocurrencies as for some of the more traditional asset classes. However, we can still refer to certain other drivers to help us form an assessment of value.
Let’s start with the original cryptocurrency, Bitcoin, and discuss how it compares to gold and commodities.
Valuing Bitcoin — Stock to Flow Ratio
Bitcoin is often valued using the stock to flow ratio, which quantifies the “hardness” of an asset. A report by Bayerische Landesbank found that:
“Applied to Bitcoin, an unusually strong correlation emerges between the market value of this cryptocurrency and the ratio between existing stockpiles of Bitcoin (“stock”) and new supply (“flow”).”
The book “The Bitcoin Standard” by Saifedean Ammous introduced the stock-to-flow approach in relation to valuing Bitcoin. The supply of Bitcoin can be engineered at will. Satoshi set into the protocol a drastic decline in supply growth (due to halving every 4 years). Price is decoupled from mining efforts, so as the price rises, the difficulty of mining Bitcoin increases. Subsequently, new supply, or flow, correspondingly reduces.
The supply profile is guaranteed by the existing setup — if the supply profile were to change, it would adversely affect the peer to peer network that holds bitcoin and dilute the value of their coins.
As a comparison, the stock to flow ratio is the way gold is valued. Gold is used as a store of value in hard times. The supply of gold cannot be increased in huge quantities, and the annual production of fresh gold (“flow”) is limited, adding only incrementally to the existing stockpile (“stock”). So gold is described as having a high stock to flow ratio. However much the price of gold increases, the amount produced will not be increased exponentially, which would dilute the stock to flow ratio.
The next Bitcoin halving is due to take place in May 2020, potentially hugely increasing the stock to flow ratio of Bitcoin. It will be interesting to see what that does to the Bitcoin price.
Valuing according to utility
A cryptocurrency must have a strong use case to incentivize people to have the coins. How useful a coin is feeds through to the value of the coin.
If we take the example of Ether, in order to execute commands and develop applications in the Ethereum blockchain, you need to own Ether. The Ether is converted into “Gas”, which is used to run the network. Ether is, therefore, the currency used to drive transactions and development on the Ethereum blockchain. The more people that are transacting with and on Ethereum, the greater the demand for Ether becomes, eventually leading to a price increase.
“Users will use the infrastructure that offers them the applications they need. And yes, at the moment this is clearly Ethereum. There are more Apps and smart contracts deployed on Ethereum than on all other application-focused blockchain protocols put together.” Max Lautenschläger, Managing Partner, Iconic Holding
Therefore, price of utility protocols is contingent upon the community engaging them and adoption of applications built on top of them. As long as they continue to build and adopt, because it is useful for them, the growing utility that will continue to drive value.
There are many other types of cryptocurrencies and crypto assets, as my colleague highlighted in a recent article. Crypto may be in its early stages and be extremely volatile, but traditionally-minded investors and financial institutions can rest easy knowing there are standard ways through which value can be calculated.
# # #
This article is strictly for educational purposes and isn’t to be construed as financial advice.
By Sara Sabin, Business Development, Iconic Holding
submitted by IconicLab to u/IconicLab [link] [comments]

Threshold Signature Explained— Bringing Exciting Applications with TSS

Threshold Signature Explained— Bringing Exciting Applications with TSS
— A deep dive into threshold signature without mathematics by ARPA’s cryptographer Dr. Alex Su

https://preview.redd.it/cp0wib2mk0q41.png?width=757&format=png&auto=webp&s=d42056f42fb16041bc512f10f10fed56a16dc279
Threshold signature is a distributed multi-party signature protocol that includes distributed key generation, signature, and verification algorithms.
In recent years, with the rapid development of blockchain technology, signature algorithms have gained widespread attention in both academic research and real-world applications. Its properties like security, practicability, scalability, and decentralization of signature are pored through.
Due to the fact that blockchain and signature are closely connected, the development of signature algorithms and the introduction of new signature paradigms will directly affect the characteristics and efficiency of blockchain networks.
In addition, institutional and personal account key management requirements stimulated by distributed ledgers have also spawned many wallet applications, and this change has also affected traditional enterprises. No matter in the blockchain or traditional financial institutions, the threshold signature scheme can bring security and privacy improvement in various scenarios. As an emerging technology, threshold signatures are still under academic research and discussions, among which there are unverified security risks and practical problems.
This article will start from the technical rationale and discuss about cryptography and blockchain. Then we will compare multi-party computation and threshold signature before discussing the pros and cons of different paradigms of signature. In the end, there will be a list of use cases of threshold signature. So that, the reader may quickly learn about the threshold signature.
I. Cryptography in Daily Life
Before introducing threshold signatures, let’s get a general understanding of cryptography. How does cryptography protect digital information? How to create an identity in the digital world? At the very beginning, people want secure storage and transmission. After one creates a key, he can use symmetric encryption to store secrets. If two people have the same key, they can achieve secure transmission between them. Like, the king encrypts a command and the general decrypts it with the corresponding key.
But when two people do not have a safe channel to use, how can they create a shared key? So, the key exchange protocol came into being. Analogously, if the king issues an order to all the people in the digital world, how can everyone proves that the sentence originated from the king? As such, the digital signature protocol was invented. Both protocols are based on public key cryptography, or asymmetric cryptographic algorithms.


“Tiger Rune” is a troop deployment tool used by ancient emperor’s, made of bronze or gold tokens in the shape of a tiger, split in half, half of which is given to the general and the other half is saved by the emperor. Only when two tiger amulets are combined and used at the same time, will the amulet holder get the right to dispatch troops.
Symmetric and asymmetric encryption constitute the main components of modern cryptography. They both have three fixed parts: key generation, encryption, and decryption. Here, we focus on digital signature protocols. The key generation process generates a pair of associated keys: the public key and the private key. The public key is open to everyone, and the private key represents the identity and is only revealed to the owner. Whoever owns the private key has the identity represented by the key. The encryption algorithm, or signature algorithm, takes the private key as input and generate a signature on a piece of information. The decryption algorithm, or signature verification algorithm, uses public keys to verify the validity of the signature and the correctness of the information.
II. Signature in the Blockchain
Looking back on blockchain, it uses consensus algorithm to construct distributed books, and signature provides identity information for blockchain. All the transaction information on the blockchain is identified by the signature of the transaction initiator. The blockchain can verify the signature according to specific rules to check the transaction validity, all thanks to the immutability and verifiability of the signature.
For cryptography, the blockchain is more than using signature protocol, or that the consensus algorithm based on Proof-of-Work uses a hash function. Blockchain builds an infrastructure layer of consensus and transaction through. On top of that, the novel cryptographic protocols such as secure multi-party computation, zero-knowledge proof, homomorphic encryption thrives. For example, secure multi-party computation, which is naturally adapted to distributed networks, can build secure data transfer and machine learning platforms on the blockchain. The special nature of zero-knowledge proof provides feasibility for verifiable anonymous transactions. The combination of these cutting-edge cryptographic protocols and blockchain technology will drive the development of the digital world in the next decade, leading to secure data sharing, privacy protection, or more applications now unimaginable.
III. Secure Multi-party Computation and Threshold Signature
After introducing how digital signature protocol affects our lives, and how to help the blockchain build identities and record transactions, we will mention secure multi-party computation (MPC), from where we can see how threshold signatures achieve decentralization. For more about MPC, please refer to our previous posts which detailed the technical background and application scenarios.
MPC, by definition, is a secure computation that several participants jointly execute. Security here means that, in one computation, all participants provide their own private input, and can obtain results from the calculation. It is not possible to get any private information entered by other parties. In 1982, when Prof. Yao proposed the concept of MPC, he gave an example called the “Millionaires Problem” — two millionaires who want to know who is richer than the other without telling the true amount of assets. Specifically, the secure multiparty computation would care about the following properties:
  • Privacy: Any participant cannot obtain any private input of other participants, except for information that can be inferred from the computation results.
  • Correctness and verifiability: The computation should ensure correct execution, and the legitimacy and correctness of this process should be verifiable by participants or third parties.
  • Fairness or robustness: All parties involved in the calculation, if not agreed in advance, should be able to obtain the computation results at the same time or cannot obtain the results.
Supposing we use secure multi-party computation to make a digital signature in a general sense, we will proceed as follows:
  • Key generation phase: all future participants will be involved together to do two things: 1) each involved party generates a secret private key; 2) The public key is calculated according to the sequence of private keys.
  • Signature phase: Participants joining in a certain signature use their own private keys as private inputs, and the information to be signed as a public input to perform a joint signature operation to obtain a signature. In this process, the privacy of secure multi-party computing ensures the security of private keys. The correctness and robustness guarantee the unforgeability of the signature and everyone can all get signatures.
  • Verification phase: Use the public key corresponding to the transaction to verify the signature as traditional algorithm. There is no “secret input” during the verification, this means that the verification can be performed without multi-party computation, which will become an advantage of multi-party computation type distributed signature.
The signature protocol constructed on the idea of ​​secure multiparty computing is the threshold signature. It should be noted that we have omitted some details, because secure multiparty computing is actually a collective name for a type of cryptographic protocol. For different security assumptions and threshold settings, there are different construction methods. Therefore, the threshold signatures of different settings will also have distinctive properties, this article will not explain each setting, but the comparative result with other signature schemes will be introduced in the next section.
IV. Single Signature, Multi-Signature and Threshold Signature
Besides the threshold signature, what other methods can we choose?
Bitcoin at the beginning, uses single signature which allocates each account with one private key. The message signed by this key is considered legitimate. Later, in order to avoid single point of failure, or introduce account management by multiple people, Bitcoin provides a multi-signature function. Multi-signature can be simply understood as each account owner signs successively and post all signatures to the chain. Then signatures are verified in order on the chain. When certain conditions are met, the transaction is legitimate. This method achieves a multiple private keys control purpose.
So, what’s the difference between multi-signature and threshold signature?
Several constraints of multi-signature are:
  1. The access structure is not flexible. If an account’s access structure is given, that is, which private keys can complete a legal signature, this structure cannot be adjusted at a later stage. For example, a participant withdraws, or a new involved party needs to change the access structure. If you must change, you need to complete the initial setup process again, which will change the public key and account address as well.
  2. Less efficiency. The first is that the verification on chain consumes power of all nodes, and therefore requires a processing fee. The verification of multiple signatures is equivalent to multiple single signatures. The second is performance. The verification obviously takes more time.
  3. Requirements of smart contract support and algorithm adaptation that varies from chain to chain. Because multi-sig is not naturally supported. Due to the possible vulnerabilities in smart contracts, this support is considered risky.
  4. No anonymity, this is not able to be trivially called disadvantage or advantage, because anonymity is required for specific conditions. Anonymity here means that multi-signature directly exposes all participating signers of the transaction.
Correspondingly, the threshold signature has the following features:
  1. The access structure is flexible. Through an additional multi-party computation, the existing private key sequence can be expanded to assign private keys to new participants. This process will not expose the old and newly generated private key, nor will it change the public key and account address.
  2. It provides more efficiency. For the chain, the signature generated by the threshold signature is not different from a single signature, which means the following improvements : a) The verification is the same as the single signature, and needs no additional fee; b ) the information of the signer is invisible, because for other nodes, the information is decrypted with the same public key; c) No smart contract on chain is needed to provide additional support.
In addition to the above discussion, there is a distributed signature scheme supported by Shamir secret sharing. Secret sharing algorithm has a long history which is used to slice information storage and perform error correction information. From the underlying algorithm of secure computation to the error correction of the disc. This technology has always played an important role, but the main problem is that when used in a signature protocol, Shamir secret sharing needs to recover the master private key.
As for multiple signatures or threshold signature, the master private key has never been reconstructed, even if it is in memory or cache. this short-term reconstruction is not tolerable for vital accounts.
V. Limitations
Just like other secure multi-party computation protocols, the introduction of other participants makes security model different with traditional point-to-point encrypted transmission. The problem of conspiracy and malicious participants were not taken into account in algorithms before. The behavior of physical entities cannot be restricted, and perpetrators are introduced into participating groups.
Therefore, multi-party cryptographic protocols cannot obtain the security strength as before. Effort is needed to develop threshold signature applications, integrate existing infrastructure, and test the true strength of threshold signature scheme.
VI. Scenarios
1. Key Management
The use of threshold signature in key management system can achieve a more flexible administration, such as ARPA’s enterprise key management API. One can use the access structure to design authorization pattern for users with different priorities. In addition, for the entry of new entities, the threshold signature can quickly refresh the key. This operation can also be performed periodically to level up the difficulty of hacking multiple private keys at the same time. Finally, for the verifier, the threshold signature is not different from the traditional signature, so it is compatible with old equipments and reduces the update cost. ARPA enterprise key management modules already support Elliptic Curve Digital Signature Scheme secp256k1 and ed25519 parameters. In the future, it will be compatible with more parameters.

https://preview.redd.it/c27zuuhdl0q41.png?width=757&format=png&auto=webp&s=26d46e871dadbbd4e3bea74d840e0198dec8eb1c
2. Crypto Wallet
Wallets based on threshold signature are more secure because the private key doesn’t need to be rebuilt. Also, without all signatures posted publicly, anonymity can be achieved. Compared to the multi-signature, threshold signature needs less transaction fees. Similar to key management applications, the administration of digital asset accounts can also be more flexible. Furthermore, threshold signature wallet can support various blockchains that do not natively support multi-signature, which reduces the risk of smart contracts bugs.

Conclusion

This article describes why people need the threshold signature, and what inspiring properties it may bring. One can see that threshold signature has higher security, more flexible control, more efficient verification process. In fact, different signature technologies have different application scenarios, such as aggregate signatures not mentioned in the article, and BLS-based multi-signature. At the same time, readers are also welcomed to read more about secure multi-party computation. Secure computation is the holy grail of cryptographic protocols. It can accomplish much more than the application of threshold signatures. In the near future, secure computation will solve more specific application questions in the digital world.

About Author

Dr. Alex Su works for ARPA as the cryptography researcher. He got his Bachelor’s degree in Electronic Engineering and Ph.D. in Cryptography from Tsinghua University. Dr. Su’s research interests include multi-party computation and post-quantum cryptography implementation and acceleration.

About ARPA

ARPA is committed to providing secure data transfer solutions based on cryptographic operations for businesses and individuals.
The ARPA secure multi-party computing network can be used as a protocol layer to implement privacy computing capabilities for public chains, and it enables developers to build efficient, secure, and data-protected business applications on private smart contracts. Enterprise and personal data can, therefore, be analyzed securely on the ARPA computing network without fear of exposing the data to any third party.
ARPA’s multi-party computing technology supports secure data markets, precision marketing, credit score calculations, and even the safe realization of personal data.
ARPA’s core team is international, with PhDs in cryptography from Tsinghua University, experienced systems engineers from Google, Uber, Amazon, Huawei and Mitsubishi, blockchain experts from the University of Tokyo, AIG, and the World Bank. We also have hired data scientists from CircleUp, as well as financial and data professionals from Fosun and Fidelity Investments.
For more information about ARPA, or to join our team, please contact us at [email protected].
Learn about ARPA’s recent official news:
Telegram (English): https://t.me/arpa_community
Telegram (Việt Nam): https://t.me/ARPAVietnam
Telegram (Russian): https://t.me/arpa_community_ru
Telegram (Indonesian): https://t.me/Arpa_Indonesia
Telegram (Thai): https://t.me/Arpa_Thai
Telegram (Philippines):https://t.me/ARPA_Philippines
Telegram (Turkish): https://t.me/Arpa_Turkey
Korean Chats: https://open.kakao.com/o/giExbhmb (Kakao) & https://t.me/arpakoreanofficial (Telegram, new)
Medium: https://medium.com/@arpa
Twitter: u/arpaofficial
Reddit: https://www.reddit.com/arpachain/
Facebook: https://www.facebook.com/ARPA-317434982266680/54
submitted by arpaofficial to u/arpaofficial [link] [comments]

Jiangzhuoer: CSW's Three Extreme Claims - [BitKan 1v1] Craig Wright vs Jiangzhuoer

Jiangzhuoer: CSW's Three Extreme Claims - [BitKan 1v1] Craig Wright vs Jiangzhuoer
Digest from [BitKan 1v1] debate.
bitkan.pro aggregates all trading depth of Binance Huobi and OKEx. or Try our APP!
https://preview.redd.it/ohaz6a5lkoc31.png?width=1058&format=png&auto=webp&s=826957a79fe4fa6e66f2565cbe265cc5e7c3b772
Question 2: During the BCH fork to BSV hash war, why do you support BCH? What do you think of the differences between BSV and BCH?
Jiang: First of all, we have to figure out how did some of the key propositions of BSV came about. CSW seems to be the leader of the BSV community, but in fact CSW is just a chess piece. For example, CSW is in name the chief scientist of Nchain, but CSW has no shares in a series of BSV related companies such as Nchain, Coingeek etc. The true boss of BSV and the main backer behind CSW is Calvin Ayre, the casino tycoon.
Zhao Nan wrote two articles, which made the cause and effect of CA's capital layout clear:
"The capital layout of the casino tycoon Calvin Ayre" >>(Chinese)
"The ins and outs of the Calvin Ayre team" >>(Chinese)
Therefore, the ultimate goal of Calvin Ayre is to make money from the Canadian stock market through Coingeek. Coingeek develops its own mining machine, mines itself, controls the chain of BSV, and has the "CSW" as the gimmick, to tell us the story of BSV.

So BCH forks the BSV, which is a step in the entire capital layout of Calvin Ayre. It is not because there is any irreconcilable development direction, but because Coingeek needs to control the BCH. If it cannot be controlled, it will split into a chain that Coingeek can control completely. The whole thing is planned in advance, for example, bitcoinsv.org registration date is July 2, 2018, bitcoinsv.io is August 16, long before CSW began firing shots at ABC team.
CSW’s goal is to split the BSV from the BCH, so he must overstate many of his claims in order to create a split. If he puts forward a reasonable claim and BCH is a rational and pragmatic community, then he can't split. It is important to mention some very extreme claims that the BCH community can't accept, and then incite some community members through extremist claims, just like the Nazis do extreme propaganda and incitement, in order to split from the BCH.

CSW's extreme claims, such as:
1 Super block: BCH advocates large block expansion. What about CSW? He demands to upgrade the oversized block in a short time. The BCH 32MB block is sufficient and does not exceed the network load. CSW exerts that he will upgrade 128MB now. He will not wait till next year, and he intends to upgrade to 2g as well in 2019.
But the result? Don't even talk about 2G, the 100M block has exceeded the current network carrying capacity. After the BSV, because the block is too large, it is too late to spread across the entire network. There have been many deep rollbacks, April 18, 2019. At that time, the 578640 height 128M block resulted in 6 confirmed rollbacks, making the 6 confirmations unreliable.
On April 18, 2019, Beijing time, from 21:00 to 22:00, the deep recombination of up to six blocks occurred in the cobwebs of BSV (block height 578640-578645)

https://preview.redd.it/7winlisnkoc31.png?width=1124&format=png&auto=webp&s=1c766e14d6360f869006b918b3e7d2a25b9b5fe4
According to BitMEX Research, the BSV chain was rolled back by two blocks in the week. One of the orphaned blocks was about 62.6MB in size. This large block may be the cause of the roll back. In addition, BSV plans to launch an upgraded network called Quasar on July 24. The only change to this upgrade is to increase the default block size limit. It is reported that the expansion of block capacity will increase the probability of block reorganization: the large block has not yet been packaged, and multiple small blocks have made the block height overtaking, which will lead to block reorganization or even fork.

2 Lock-up agreement: A chain must stabilize the agreement. The agreement is greatly changed every time. It definitely affects the above development. If CSW proposes a stable agreement, then everyone agrees that he can't split it. What should he do? CSW is even more extreme, and I am going to set the protocol and lock it, even back to the original version of Bitcoin, which is ridiculous.
The environment has changed, and the agreement must change. For example, if the 0.1 version of Bitcoin is perfect, and the 14-day difficulty adjustment is not a defect, the BSV will not remove the BCH “not original” DDA difficulty adjustment algorithm, and switch back to 14 Day difficulty adjustment? Because once the BSV removes the BCH DDA difficulty adjustment algorithm, it will be directly cut and killed by the big calculation.

3 Computing power determines everything: Why does CW have the power to decide everything? Because the extremes did not dominate the community at the time, but CA's coingeek deployed a lot of mining machines to mine, which is very computationally intensive, so he advocated Force to decide everything, of course, he did not know that my calculations were more than him. I will talk about this later.
Because these claims are created for splitting, not natural development, so these claims will be internal contradictions. For example, CSW said that the agreement is to be locked, and that the computing power determines everything. Even decided to increase the total amount of 21 million, then who has the final say?

Why don't I support the development path of BSV? Because these extreme claims of CSW are all for the purpose of splitting, purposefully proposed, whether it is a large block, lock-up agreement, power calculation determines everything, in fact, it can not be implemented, of course, Will not support these extreme claims that can't actually fall.
In addition, these extreme claims will become a heavy liability for the development of BSV in the future. It is necessary to develop according to these extreme claims. In fact, we cannot do this. We must revise these extreme claims. The members of the community who were incited by these extreme claims will definitely not do it. Then, how do you say that BSV is still developing?

Digest from [BitKan 1v1] debate.
bitkan.pro aggregates all trading depth of Binance Huobi and OKEx. or Try our APP!
submitted by BitKan to btc [link] [comments]

Bitcoin hack Bitcoin mining software Why Bitcoin Mining What is a Bitcoin? - YouTube What is Crypto Mining Difficulty and How it Impacts YOUR Profits - Explained W/ BTC ZenCash ZEC Inside a Bitcoin mine that earns $70K a day - YouTube

In 2017, the price of bitcoin rallied to all-time highs of close to $20,000 due to a large part of the effects of the law of economics. At the time, the market sentiment was so high that it pushed people to want to buy the coin hiking the demand levels for the coin but the supply metrics did not keep up so the price shot straight up. Algorithm: such as difficulty adjustment, revenue per block, etc., which are the features of bitcoin itself. Although they will not be affected by external factors, they will influence other factors. Miners: such as hash speed, power consumption, costs, etc. All these factors are most likely affected by upstream chip manufacturers or miner assembly manufacturers. The current bitcoin difficulty is 15.78T (at the time of writing) where it means the bitcoin mining difficulty is increased by 15.78 Trillion times from the bitcoin genesis block mining difficulty. Block Reward : It refers to the number of bitcoins rewarded to the miners for mining the new block on the bitcoin blockchain. The cryptocurrency profitability information displayed is based on a statistical calculation using the hash rate values entered and does not account for difficulty and exchange rate fluctuations, stale/reject/orphan rates, a pool's efficiency, and pool fees. Your individual profitability may vary. Bitcoin Difficulty Chart (DASH) Dash Difficulty Chart (ETH) Ethereum Difficulty Chart (ETC) Ethereum-Classic Difficulty Chart (ZEN) Horizen Difficulty Chart ... Bitcoin Mining Calculator Bitcoin Difficulty Chart Litecoin. Litecoin Mining ...

[index] [24321] [5276] [32223] [5279] [8822] [28994] [20907] [13793] [29525] [4995]

Bitcoin hack Bitcoin mining software

http://bitcoinpoet.com Bitcoin is a software-based payment system described by Satoshi Nakamoto in 2008 and introduced as open-source software in 2009. Payme... The virtual goldrush to mine Bitcoin and other cryptocurrencies leads us to Central Washington state where a Bitcoin mine generates roughly $70,000 a day min... What is crypto mining difficulty, how is it adjusted, what is the point of a block time? Vosk explains how the difficulty for mining a block reward is adjusted when mining Bitcoin on sha-256 or ... To read more about bitcoin paper wallet, go to internet site the following: http://www.cryptocoinwalletcards.com/ Tags: asic bitcoin miner, asic bitcoin mine... For more info concerning Bitcoin wallet card, litecoin wallet card, please visit site the following: http://www.cryptocoinwalletcards.com/ Tags: asic bitcoin...

#